Loading...

Skip to main content

Call us on + 1 (800) 604-9114 for more information about our products

Mouse anti-Porcine CD4C Antibody | anti-CD4C antibody

Mouse Anti-Porcine CD4-APC

Reactivity
Porcine
Applications
Flow Cytometry, Functional Assay, Immunohistochemistry, Immunoprecipitation
Synonyms
CD4C; Mouse Anti-Porcine CD4-APC; anti-CD4C antibody
Ordering
 
When autocomplete results are available use up and down arrows to review and enter to select. Touch device users, explore by touch or with swipe gestures.
For Research Use Only!
Host
Mouse
Reactivity
Porcine
Isotype
IgG2bkappa
Clone Number
74-12-4
Specificity
Porcine CD4
Form/Format
Supplied in PBS/NaN3 and a stabilizing agent
Concentration
0.1 mg/mL (varies by lot)
Applicable Applications for anti-CD4C antibody
Flow Cytometry (FC/FACS), Immunohistochemistry (IHC) Formalin/Paraffin, Immunoprecipitation (IP), Blocking (BL), Complement Mediated Cell Depletion
Volume
1.0 mL
Immunogen
Fresh dd miniature swine thymocytes
Conjugate
APC (Allophycocyanin)
Isotype Control
Mouse IgG2b-APC
Preparation and Storage
Store at 2-8 degree C.

Testing Data

Related Product Information for anti-CD4C antibody
Porcine CD4 is a type I transmembrane glycoprotein and a member of the immunoglobulin superfamily of cell surface receptors. CD4 is an accessory molecule in the recognition of foreign antigens in association with MHC Class II molecules by T lymphocytes.
References
1. Pescovitz MD, Lunney JK, Sachs DH. Preparation and characterization of monoclonal antibodies reactive with porcine PBL. J Immunol. 1984;133:368-375. (Immunogen, FC, IP, CMDC). 2. Minguez I, Rueda A, Domínguez J, Sánchez-Vizcaíno JM. Double labeling immunohistological study of African swine fever virus-infected spleen and lymph nodes. Vet Pathol. 1988;25:193-8. (IHC-FS). 3. Yamada K, Shimizu A, Ierino FL, Utsugi R, Barth RN, Esnaola N, et al. Thymic transplantation in miniature swine. I. Development and function of the "thymokidney". Transplantation. 1999;68:1684-92. (IHC-FS). 4. Shimizu A, Yamada K, Meehan SM, Sachs DH, Colvin RB. Acceptance reaction: intragraft events associated with tolerance to renal allografts in miniature swine. J Am Soc Nephrol. 2000;11:2371-80. (IHC-FS). 5. Shimizu A, Yamada K, Sachs DH, Colvin RB. Mechanisms of chronic renal allograft rejection. II. Progressive allograft glomerulopathy in miniature swine. Lab Invest. 2002;82:673-85. (IHC-FS). 6. Jamin A, Gorin S, Le Potier M, Kuntz-Simon G. Characterization of conventional and plasmacytoid dendritic cells in swine secondary lymphoid organs and blood. Vet Immunol Immunopathol. 2006;114:224-37. (FC, IHC-FS). 7. Jamin A, Gorin S, Cariolet R, Le Potier M, Kuntz-Simon G. Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs. Vet Res. 2008;39:7. (FC, IHC-FS). 8. Debeer S, Le Luduec J, Kaiserlian D, Laurent P, Nicolas J, Dubois B, et al. Comparative histology and immunohistochemistry of porcine versus human skin. Eur J Dematol. 2013;23:456-66. (IHC-FS). 9. Tingstedt J, Nielsen J. Cellular immune responses in the lungs of pigs infected in utero with PRRSV: an immunohistochemical study. Viral Immunol. 2004;17:558-64. (IHC-PS). 10. Jung K, Alekseev KP, Zhang X, Cheon D, Vlasova AN, Saif LJ. Altered pathogenesis of porcine respiratory coronavirus in pigs due to immunosuppressive effects of dexamethasone: implications for corticosteroid use in treatment of severe acute respiratory syndrome coronavirus. J Virol. 2007;81:13681-93. (IHC-PS). 11. Toka FN, Nfon CK, Dawson H, Golde WT. Accessory-cell-mediated activation of porcine NK cells by toll-like receptor 7 (TLR7) and TLR8 agonists. Clin Vaccine Immunol. 2009;16:866-78. (Sep). 12. Toka FN, Nfon CK, Dawson H, Estes DM, Golde WT. Activation of porcine natural killer cells and lysis of foot-and-mouth disease virus infected cells. J Interferon Cytokine Res. 2009;29:179-92. (Sep). 13. Toka FN, Nfon C, Dawson H, Golde WT. Natural killer cell dysfunction during acute infection with foot-and-mouth disease virus. Clin Vaccine Immunol. 2009;16:1738-49. (Sep). 14. Kreuzer S, Rieger J, Strucken EM, Thaben N, Hünigen H, Nöckler K, et al. Characterization of CD4+ subpopulations and CD25+ cells in ileal lymphatic tissue of weaned piglets infected with Salmonella Typhimurium with or without Enterococus faecium feeding. Vet Immunol Immunopathol. 2014;158:143-55. (FC, Sep). 15. Pescovitz MD, Lunney JK, Sachs DH. Murine anti-swine T4 and T8 monoclonal antibodies: distribution and effects on proliferative and cytotoxic T cells. J Immunol. 1985;134:37-44. (Block, FC). 16. Saíz JC, Rodríguez A, González M, Alonso F, Sobrino F. Heterotypic lymphoproliferative response in pigs vaccinated with foot-and-mouth disease virus. Involvement of isolated capsid proteins. J Gen Virol. 1992;73:2601-7. (Block). 17. Davis ME, Maxwell CV, Erf GF, Brown DC, Wistuba TJ. Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J Anim Sci. 2004;82:1882-91. (FC). 18. Layton DS, Bean AG, Dodge NM, Strom AD, Sandrin MS, Ierino FL. Differential cytokine expression and regulation of human anti-pig xenogeneic responses by modified porcine dendritic cells. Xenotransplantation. 2008;15:257-67. (FC). 19. Martelli P, Gozio S, Ferrari L, Rosina S, De Angelis E, Quintavalla C, et al. Efficacy of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs naturally exposed to a heterologous European (Italian cluster) field strain: Clinical protection and cell-mediated immunity. Vaccine. 2009;27:3788-99. (FC). 20. Ferrari L, Borghetti P, Gozio S, De Angelis E, Ballotta L, Smeets J, et al. Evaluation of the immune response induced by intradermal vaccination by using a needle-less system in comparison with the intramuscular route in conventional pigs. Res Vet Sci. 2011;90:64-71. (FC). 21. Oh Y, Seo HW, Han K, Park C, Chae C. Protective effect of the maternally derived porcine circovirus type 2 (PCV2)-specific cellular immune response in piglets by dam vaccination against PCV2 challenge. J Gen Virol. 2012;93:1556-62. (FC). 22. Ravlo K, Koefoed-Nielsen P, Secher N, Søndergaard P, Keller AK, Petersen MS, et al. Effect of remote ischemic conditioning on dendritic cell number in blood after renal transplantation - flow cytometry in a porcine model. Transpl Immunol. 2012;26:146-50. (FC). 23. Hester SN, Comstock SS, Thorum SC, Monaco MH, Pence BD, Woods JA, et al. Intestinal and systemic immune development and response to vaccination are unaffected by dietary (1,3/1,6)-beta-D-glucan supplementation in neonatal piglets. Clin Vaccine Immunol. 2012;19:1499-508. (FC). 24. Villena J, Suzuki R, Fujie H, Chiba E, Takahashi T, Tomosada Y, et al. Immunobiotic Lactobacillus jensenii modulates the Toll-like receptor 4-induced inflammatory response via negative regulation in porcine antigen-presenting cells. Clin Vaccine Immunol. 2012;19:1038-53. (FC). 25. Liu Y, Che TM, Song M, Lee JJ, Almeida JA, Bravo D, et al. Dietary plant extracts improve immune responses and growth efficiency of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci. 2013;91:5668-79. (FC). 26. Liu KY, Comstock SS, Shunk JM, Monaco MH, Donovan SM. Natural killer cell populations and cytotoxic activity in pigs fed mother's milk, formula, or formula supplemented with bovine lactoferrin. Pediatr Res. 2013;74:402-7. (FC). 27. Thorum SC, Hester SN, Comstock SS, Monaco MH, Pence BD, Woods JA., et al. Dietary (1,3/1,6)-beta-D-glucan decreases transforming growth factor beta expression in the lung of the neonatal piglet. Nutr Res. 2013;33:322-31 (FC). 28. Liu P, Pieper R, Tedin L, Martin L, Meyer W, Rieger J, et al. Effect of dietary zinc oxide on jejunal morphological and immunological characteristics in weaned piglets. J Anim S. 2014;92:5009-18. (FC). 29. Ferrari L, Borghetti P, De Angelis E, Martelli P. Memory T cell proliferative responses and IFN-gamma productivity sustain long-lasting efficacy of a Cap-based PCV2 vaccine upon PCV2 natural infection and associated disease. Vet Res. 2014;45:44. (FC). 30. Leclercq C, Prunier A, Thomas F, Merlot E. Neonatal surgical castration of male pigs reduces thymic growth but has moderate consequences on thymocytes. J Anim Sci. 2014;92:2415-21. (FC). 31. Whelan RA, Rausch S, Ebner F, Günzel D, Richter JF, Hering NA, et al. A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Mol Ther. 2014;22:1730-40. (FC)

Similar Products

Product Notes

The CD4C (Catalog #AAA679303) is an Antibody produced from Mouse and is intended for research purposes only. The product is available for immediate purchase. The Mouse Anti-Porcine CD4-APC reacts with Porcine and may cross-react with other species as described in the data sheet. AAA Biotech's CD4C can be used in a range of immunoassay formats including, but not limited to, Flow Cytometry (FC/FACS), Immunohistochemistry (IHC) Formalin/Paraffin, Immunoprecipitation (IP), Blocking (BL), Complement Mediated Cell Depletion. Researchers should empirically determine the suitability of the CD4C for an application not listed in the data sheet. Researchers commonly develop new applications and it is an integral, important part of the investigative research process. It is sometimes possible for the material contained within the vial of "CD4C, Antibody" to become dispersed throughout the inside of the vial, particularly around the seal of said vial, during shipment and storage. We always suggest centrifuging these vials to consolidate all of the liquid away from the lid and to the bottom of the vial prior to opening. Please be advised that certain products may require dry ice for shipping and that, if this is the case, an additional dry ice fee may also be required.

Precautions

All products in the AAA Biotech catalog are strictly for research-use only, and are absolutely not suitable for use in any sort of medical, therapeutic, prophylactic, in-vivo, or diagnostic capacity. By purchasing a product from AAA Biotech, you are explicitly certifying that said products will be properly tested and used in line with industry standard. AAA Biotech and its authorized distribution partners reserve the right to refuse to fulfill any order if we have any indication that a purchaser may be intending to use a product outside of our accepted criteria.

Disclaimer

Though we do strive to guarantee the information represented in this datasheet, AAA Biotech cannot be held responsible for any oversights or imprecisions. AAA Biotech reserves the right to adjust any aspect of this datasheet at any time and without notice. It is the responsibility of the customer to inform AAA Biotech of any product performance issues observed or experienced within 30 days of receipt of said product. To see additional details on this or any of our other policies, please see our Terms & Conditions page.
Looking for a specific manual?
Request a Manual