BMP4 sirna
BMP4 siRNA (Mouse)
NCBI and Uniprot Product Information
Uniprot Description
BMP4: Induces cartilage and bone formation. Also act in mesoderm induction, tooth development, limb formation and fracture repair. Acts in concert with PTHLH/PTHRP to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Homodimer; disulfide-linked. Interacts with GREM2. Part of a complex consisting of TWSG1 and CHRD. Interacts with the serine proteases, HTRA1 and HTRA3; the interaction with either inhibits BMP4-mediated signaling. The HTRA protease activity is required for this inhibition. Interacts with SOSTDC1. Expressed in the lung and lower levels seen in the kidney. Present also in normal and neoplastic prostate tissues, and prostate cancer cell lines. Belongs to the TGF-beta family.
Protein type: Secreted, signal peptide; Secreted
Cellular Component: proteinaceous extracellular matrix; extracellular space; cytoplasm; extracellular region
Molecular Function: heparin binding; protein binding; protein homodimerization activity; growth factor activity; cytokine activity; transforming growth factor beta receptor binding; chemoattractant activity
Biological Process: negative regulation of MAP kinase activity; activation of MAPKK activity; positive regulation of apoptosis; embryonic skeletal development; positive regulation of transcription, DNA-dependent; negative regulation of chondrocyte differentiation; mesodermal cell differentiation; telencephalon regionalization; cardiac muscle cell differentiation; germ cell development; BMP signaling pathway; regulation of protein import into nucleus; anatomical structure formation; kidney development; regulation of odontogenesis of dentine-containing teeth; embryonic limb morphogenesis; endochondral ossification; negative regulation of immature T cell proliferation in the thymus; positive regulation of cardiac muscle fiber development; cell fate commitment; camera-type eye development; regulation of smooth muscle cell proliferation; neuron fate commitment; camera-type eye morphogenesis; regulation of gene expression; negative regulation of mitosis; positive regulation of epidermal cell differentiation; smooth muscle cell differentiation; positive regulation of transcription from RNA polymerase II promoter; embryonic digit morphogenesis; negative regulation of apoptosis; tissue development; positive regulation of protein binding; negative regulation of transcription from RNA polymerase II promoter; negative regulation of cell proliferation; inner ear receptor cell differentiation; ureteric bud development; intermediate mesodermal cell differentiation; forebrain development; positive regulation of cell proliferation; embryonic morphogenesis; angiogenesis; positive regulation of BMP signaling pathway; common-partner SMAD protein phosphorylation; negative regulation of T cell differentiation in the thymus; positive regulation of bone mineralization; positive regulation of ossification; odontogenesis of dentine-containing teeth; embryonic skeletal morphogenesis; osteoblast differentiation; positive regulation of osteoblast differentiation; blood vessel endothelial cell proliferation during sprouting angiogenesis; telencephalon development; ureteric bud branching; regulation of cell fate commitment; positive regulation of neuron differentiation; anterior/posterior axis specification; lung development; renal system process; macrophage differentiation; heart development; multicellular organismal development; lymphoid progenitor cell differentiation; post-embryonic development; positive regulation of endothelial cell differentiation; positive chemotaxis; induction of an organ; erythrocyte differentiation; chondrocyte differentiation; specification of organ position; regulation of endothelial cell proliferation; monocyte differentiation; embryonic cranial skeleton morphogenesis; negative regulation of striated muscle development; branching morphogenesis of a tube; mesoderm formation; negative regulation of phosphorylation; positive regulation of endothelial cell proliferation; hemopoietic progenitor cell differentiation; steroid hormone mediated signaling; negative regulation of transcription, DNA-dependent; positive regulation of cell differentiation; metanephros development; alveolus development; positive regulation of epithelial cell proliferation; positive regulation of smooth muscle cell proliferation; positive regulation of collagen biosynthetic process; embryonic hindlimb morphogenesis; positive regulation of vascular endothelial growth factor receptor signaling pathway; negative regulation of cell cycle; odontogenesis; smooth muscle development; vasculature development; ovarian follicle development; regulation of cell differentiation; regulation of smooth muscle cell differentiation; cell differentiation; skeletal development; dorsoventral neural tube patterning; negative regulation of epithelial cell proliferation; blood vessel development; ossification; negative regulation of oligodendrocyte differentiation; eye development; pituitary gland development; cartilage development; neural tube closure; positive regulation of protein amino acid phosphorylation; negative regulation of myoblast differentiation; mesodermal cell fate determination; growth
Research Articles on BMP4
Similar Products
Product Notes
The BMP4 bmp4 (Catalog #AAA8203192) is a siRNA produced from Synthetic and is intended for research purposes only. The product is available for immediate purchase. The BMP4 siRNA (Mouse) reacts with Mouse and may cross-react with other species as described in the data sheet. AAA Biotech's BMP4 can be used in a range of immunoassay formats including, but not limited to, RNA Interference (RNAi). Researchers should empirically determine the suitability of the BMP4 bmp4 for an application not listed in the data sheet. Researchers commonly develop new applications and it is an integral, important part of the investigative research process. It is sometimes possible for the material contained within the vial of "BMP4, siRNA" to become dispersed throughout the inside of the vial, particularly around the seal of said vial, during shipment and storage. We always suggest centrifuging these vials to consolidate all of the liquid away from the lid and to the bottom of the vial prior to opening. Please be advised that certain products may require dry ice for shipping and that, if this is the case, an additional dry ice fee may also be required.Precautions
All products in the AAA Biotech catalog are strictly for research-use only, and are absolutely not suitable for use in any sort of medical, therapeutic, prophylactic, in-vivo, or diagnostic capacity. By purchasing a product from AAA Biotech, you are explicitly certifying that said products will be properly tested and used in line with industry standard. AAA Biotech and its authorized distribution partners reserve the right to refuse to fulfill any order if we have any indication that a purchaser may be intending to use a product outside of our accepted criteria.Disclaimer
Though we do strive to guarantee the information represented in this datasheet, AAA Biotech cannot be held responsible for any oversights or imprecisions. AAA Biotech reserves the right to adjust any aspect of this datasheet at any time and without notice. It is the responsibility of the customer to inform AAA Biotech of any product performance issues observed or experienced within 30 days of receipt of said product. To see additional details on this or any of our other policies, please see our Terms & Conditions page.Item has been added to Shopping Cart
If you are ready to order, navigate to Shopping Cart and get ready to checkout.