References
Phenotypic and genetic alterations in mammary stroma
implications for tumour progression.Schor S.L., Schor A.M.Breast Cancer Res. 3:373-379(2001)
The expression of migration stimulating factor, a potent oncofetal cytokine, is uniquely controlled by 3'-untranslated region-dependent nuclear sequestration of its precursor messenger RNA.Kay R.A., Ellis I.R., Jones S.J., Perrier S., Florence M.M., Schor A.M., Schor S.L.Cancer Res. 65:10742-10749(2005)
Vector-capping
a simple method for preparing a high-quality full-length cDNA library.Kato S., Ohtoko K., Ohtake H., Kimura T.DNA Res. 12:53-62(2005)
Totoki Y., Toyoda A., Takeda T., Sakaki Y., Tanaka A., Yokoyama S., Ohara O., Nagase T., Kikuno R.F. The full-ORF clone resource of the German cDNA consortium.Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U., Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H., Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K., Ottenwaelder B., Poustka A., Wiemann S., Schupp I.BMC Genomics 8:399-399(2007)
Generation and annotation of the DNA sequences of human chromosomes 2 and 4.Hillier L.W., Graves T.A., Fulton R.S., Fulton L.A., Pepin K.H., Minx P., Wagner-McPherson C., Layman D., Wylie K., Sekhon M., Becker M.C., Fewell G.A., Delehaunty K.D., Miner T.L., Nash W.E., Kremitzki C., Oddy L., Du H., Sun H., Bradshaw-Cordum H., Ali J., Carter J., Cordes M., Harris A., Isak A., van Brunt A., Nguyen C., Du F., Courtney L., Kalicki J., Ozersky P., Abbott S., Armstrong J., Belter E.A., Caruso L., Cedroni M., Cotton M., Davidson T., Desai A., Elliott G., Erb T., Fronick C., Gaige T., Haakenson W., Haglund K., Holmes A., Harkins R., Kim K., Kruchowski S.S., Strong C.M., Grewal N., Goyea E., Hou S., Levy A., Martinka S., Mead K., McLellan M.D., Meyer R., Randall-Maher J., Tomlinson C., Dauphin-Kohlberg S., Kozlowicz-Reilly A., Shah N., Swearengen-Shahid S., Snider J., Strong J.T., Thompson J., Yoakum M., Leonard S., Pearman C., Trani L., Radionenko M., Waligorski J.E., Wang C., Rock S.M., Tin-Wollam A.-M., Maupin R., Latreille P., Wendl M.C., Yang S.-P., Pohl C., Wallis J.W., Spieth J., Bieri T.A., Berkowicz N., Nelson J.O., Osborne J., Ding L., Meyer R., Sabo A., Shotland Y., Sinha P., Wohldmann P.E., Cook L.L., Hickenbotham M.T., Eldred J., Williams D., Jones T.A., She X., Ciccarelli F.D., Izaurralde E., Taylor J., Schmutz J., Myers R.M., Cox D.R., Huang X., McPherson J.D., Mardis E.R., Clifton S.W., Warren W.C., Chinwalla A.T., Eddy S.R., Marra M.A., Ovcharenko I., Furey T.S., Miller W., Eichler E.E., Bork P., Suyama M., Torrents D., Waterston R.H., Wilson R.K.Nature 434:724-731(2005)
Mural R.J., Istrail S., Sutton G., Florea L., Halpern A.L., Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W., Venter J.C.
Human fibronectin is synthesized as a pre-propolypeptide.Gutman A., Yamada K.M., Kornblihtt A.R.FEBS Lett. 207:145-148(1986)
Cloning and analysis of the promotor region of the human fibronectin gene.Dean D.C., Bowlus C.L., Bourgeois S.Proc. Natl. Acad. Sci. U.S.A. 84:1876-1880(1987)
Primary structure of human fibronectin
differential splicing may generate at least 10 polypeptides from a single gene.Kornblihtt A.R., Umezawa K., Vibe-Pedersen K., Baralle F.E.EMBO J. 4:1755-1759(1985)
Primary structure of human plasma fibronectin. The 29,000-dalton NH2-terminal domain.Garcia-Pardo A., Pearlstein E., Frangione B.J. Biol. Chem. 258:12670-12674(1983)
Godfrey H.P., Ebrahim A.A. Mapping the collagen-binding site of human fibronectin by expression in Escherichia coli.Owens R.J., Baralle F.E.EMBO J. 5:2825-2830(1986)
Primary structure of a DNA- and heparin-binding domain (Domain III)
in human plasma fibronectin.Calaycay J., Pande H., Lee T., Borsi L., Siri A., Shively J.E., Zardi L.J. Biol. Chem. 260:12136-12141(1985)
Identification of novel fibronectin fragments detected specifically in juvenile urine.Iida R., Yasuda T., Kishi K.FEBS J. 274:3939-3947(2007)
Human fibronectin
cell specific alternative mRNA splicing generates polypeptide chains differing in the number of internal repeats.Kornblihtt A.R., Vibe-Pedersen K., Baralle F.E.Nucleic Acids Res. 12:5853-5868(1984)
Sequence analysis and in vivo expression show that alternative splicing of ED-B and ED-A regions of the human fibronectin gene are independent events.Paolella G., Henchcliffe C., Sebastio G., Baralle F.E.Nucleic Acids Res. 16:3545-3557(1988)
Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon.Zardi L., Carnemolla B., Siri A., Petersen T.E., Paolella G., Sebastio G., Baralle F.E.EMBO J. 6:2337-2342(1987)
Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA.Gutman A., Kornblihtt A.R.Proc. Natl. Acad. Sci. U.S.A. 84:7179-7182(1987)
The cell attachment domain of fibronectin. Determination of the primary structure.Pierschbacher M.D., Ruoslahti E., Sundelin J., Lind P., Peterson P.A.J. Biol. Chem. 257:9593-9597(1982)
Molecular cloning and nucleotide sequence of a cDNA clone coding for the cell attachment domain in human fibronectin.Oldberg A., Linney E., Ruoslahti E.J. Biol. Chem. 258:10193-10196(1983)
Evolution of the fibronectin gene. Exon structure of cell attachment domain.Oldberg A., Ruoslahti E.J. Biol. Chem. 261:2113-2116(1986)
Primary structure of human plasma fibronectin. Characterization of a 38 kDa domain containing the C-terminal heparin-binding site (Hep III site)
and a region of molecular heterogeneity.Garcia-Pardo A., Rostagno A., Frangione B.Biochem. J. 241:923-928(1987)
Human cellular fibronectin
comparison of the carboxyl-terminal portion with rat identifies primary structural domains separated by hypervariable regions.Bernard M.P., Kolbe M., Weil D., Chu M.-L.Biochemistry 24:2698-2704(1985)
Human plasma fibronectin. Demonstration of structural differences between the A- and B-chains in the III CS region.Tressel T., McCarthy J.B., Calaycay J., Lee T.D., Legesse K., Shively J.E., Pande H.Biochem. J. 274:731-738(1991)
Human fibronectin
molecular cloning evidence for two mRNA species differing by an internal segment coding for a structural domain.Kornblihtt A.R., Vibe-Pedersen K., Baralle F.E.EMBO J. 3:221-226(1984)
Human liver fibronectin complementary DNAs
identification of two different messenger RNAs possibly encoding the alpha and beta subunits of plasma fibronectin.Sekiguchi K., Klos A.M., Kurachi K., Yoshitake S., Hakomori S.Biochemistry 25:4936-4941(1986)
Novel cartilage-specific splice variants of fibronectin.Parker A.E., Boutell J., Carr A., Maciewicz R.A.Osteoarthritis Cartilage 10:528-534(2002)
Isolation and characterization of cDNA clones for human liver fibronectin.Umezawa K., Kornblihtt A.R., Baralle F.E.FEBS Lett. 186:31-34(1985)
Donor and acceptor splice signals within an exon of the human fibronectin gene
a new type of differential splicing.Vibe-Pedersen K., Magnusson S., Baralle F.E.FEBS Lett. 207:287-291(1986)
Primary structure of human plasma fibronectin. Characterization of a 31,000-dalton fragment from the COOH-terminal region containing a free sulfhydryl group and a fibrin-binding site.Garcia-Pardo A., Pearlstein E., Frangione B.J. Biol. Chem. 260:10320-10325(1985)
Isolation and characterization of cDNA clones for human and bovine fibronectins.Kornblihtt A.R., Vibe-Pedersen K., Baralle F.E.Proc. Natl. Acad. Sci. U.S.A. 80:3218-3222(1983)
Tyrosine sulfation of proteins from the human hepatoma cell line HepG2.Liu M.C., Yu S., Sy J., Redman C.M., Lipmann F.Proc. Natl. Acad. Sci. U.S.A. 82:7160-7164(1985)
Purification of a young age-related glycoprotein (Ugl-Y)
from normal human urine.Iida R., Yasuda T., Kishi K.J. Biochem. 101:357-363(1987)
Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin.Balbona K., Tran H., Godyna S., Ingham K.C., Strickland D.K., Argraves W.S.J. Biol. Chem. 267:20120-20125(1992)
Further characterization of the NH2-terminal fibrin-binding site on fibronectin.Rostagno A., Williams M.J., Baron M., Campbell I.D., Gold L.I.J. Biol. Chem. 269:31938-31945(1994)
Superfibronectin is a functionally distinct form of fibronectin.Morla A., Zhang Z., Ruoslahti E.Nature 367:193-196(1994)
Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin.Sasaki T., Brakebusch C., Engel J., Timpl R.EMBO J. 17:1606-1613(1998)
A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis.Yi M., Ruoslahti E.Proc. Natl. Acad. Sci. U.S.A. 98:620-624(2001)
The type XIII collagen ectodomain is a 150-nm rod and capable of binding to fibronectin, nidogen-2, perlecan, and heparin.Tu H., Sasaki T., Snellman A., Gohring W., Pirila P., Timpl R., Pihlajaniemi T.J. Biol. Chem. 277:23092-23099(2002)
Matrix-matrix interaction of cartilage oligomeric matrix protein and fibronectin.Di Cesare P.E., Chen F.S., Moergelin M., Carlson C.S., Leslie M.P., Perris R., Fang C.Matrix Biol. 21:461-470(2002)
In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibronectin.Filla M.S., Liu X., Nguyen T.D., Polansky J.R., Brandt C.R., Kaufman P.L., Peters D.M.Invest. Ophthalmol. Vis. Sci. 43:151-161(2002)
Screening for N-glycosylated proteins by liquid chromatography mass spectrometry.Bunkenborg J., Pilch B.J., Podtelejnikov A.V., Wisniewski J.R.Proteomics 4:454-465(2004)
Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1)
arrest in human microvessel endothelial cells.Ambesi A., Klein R.M., Pumiglia K.M., McKeown-Longo P.J.Cancer Res. 65:148-156(2005)
Differential analysis of site-specific glycans on plasma and cellular fibronectins
application of a hydrophilic affinity method for glycopeptide enrichment.Tajiri M., Yoshida S., Wada Y.Glycobiology 15:1332-1340(2005)
Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry.Liu T., Qian W.-J., Gritsenko M.A., Camp D.G. II, Monroe M.E., Moore R.J., Smith R.D.J. Proteome Res. 4:2070-2080(2005)
Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M.Cell 127:635-648(2006)
A novel role for fibronectin type I domain in the regulation of human hematopoietic cell adhesiveness through binding to follistatin domains of FLRG and follistatin.Maguer-Satta V., Forissier S., Bartholin L., Martel S., Jeanpierre S., Bachelard E., Rimokh R.Exp. Cell Res. 312:434-442(2006)
Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.Han G., Ye M., Zhou H., Jiang X., Feng S., Jiang X., Tian R., Wan D., Zou H., Gu J.Proteomics 8:1346-1361(2008)
Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry.Chen R., Jiang X., Sun D., Han G., Wang F., Ye M., Wang L., Zou H.J. Proteome Res. 8:651-661(2009)
A strategy for precise and large scale identification of core fucosylated glycoproteins.Jia W., Lu Z., Fu Y., Wang H.P., Wang L.H., Chi H., Yuan Z.F., Zheng Z.B., Song L.N., Han H.H., Liang Y.M., Wang J.L., Cai Y., Zhang Y.K., Deng Y.L., Ying W.T., He S.M., Qian X.H.Mol. Cell. Proteomics 8:913-923(2009)
Regulation of p38 MAP kinase by anastellin is independent of anastellin's effect on matrix fibronectin.You R., Klein R.M., Zheng M., McKeown-Longo P.J.Matrix Biol. 28:101-109(2009)
Resveratrol-induced changes of the human adipocyte secretion profile.Rosenow A., Noben J.P., Jocken J., Kallendrusch S., Fischer-Posovszky P., Mariman E.C., Renes J.J. Proteome Res. 11:4733-4743(2012)
An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome.Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D., Wang L., Ye M., Zou H.J. Proteomics 96:253-262(2014)
1H NMR assignment and secondary structure of the cell adhesion type III module of fibronectin.Baron M., Main A.L., Driscoll P.C., Mardon H.J., Boyd J., Campbell I.D.Biochemistry 31:2068-2073(1992)
The three-dimensional structure of the tenth type III module of fibronectin
an insight into RGD-mediated interactions.Main A.L., Harvey T.S., Baron M., Boyd J., Campbell I.D.Cell 71:671-678(1992)
Solution structure of a pair of fibronectin type 1 modules with fibrin binding activity.Williams M.J., Phan I., Harvey T.S., Rostagno A., Gold L.I., Campbell I.D.J. Mol. Biol. 235:1302-1311(1994)
High-resolution structural studies of the factor XIIIa crosslinking site and the first type 1 module of fibronectin.Potts J.R., Phan I., Williams M.J., Campbell I.D.Nat. Struct. Biol. 2:946-950(1995)
Solution structure of the glycosylated second type 2 module of fibronectin.Sticht H., Pickford A.R., Potts J.R., Campbell I.D.J. Mol. Biol. 276:177-187(1998)
NMR structure of the human oncofoetal fibronectin ED-B domain, a specific marker for angiogenesis.Fattorusso R., Pellecchia M., Viti F., Neri P., Neri D., Wuethrich K.Structure 7:381-390(1999)
Solution structure of a pair of modules from the gelatin-binding domain of fibronectin.Bocquier A.A., Potts J.R., Pickford A.R., Campbell I.D.Structure 7:1451-1460(1999)
The hairpin structure of the (6)
F1(1)
F2(2)
F2 fragment from human fibronectin enhances gelatin binding.Pickford A.R., Smith S.P., Staunton D., Boyd J., Campbell I.D.EMBO J. 20:1519-1529(2001)
NMR structure of human fibronectin EDA.Niimi T., Osawa M., Yamaji N., Yasunaga K., Sakashita H., Mase T., Tanaka A., Fujita S.J. Biomol. NMR 21:281-284(2001)
Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors.Briknarova K., Aakerman M.E., Hoyt D.W., Ruoslahti E., Ely K.R.J. Mol. Biol. 332:205-215(2003)
Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper.Schwarz-Linek U., Werner J.M., Pickford A.R., Gurusiddappa S., Kim J.H., Pilka E.S., Briggs J.A., Gough T.S., Hoeoek M., Campbell I.D., Potts J.R.Nature 423:177-181(2003)
Crystal structure of the tenth type III cell adhesion module of human fibronectin.Dickinson C.D., Veerapandian B., Dai X.-P., Hamlin R.C., Xuong N.-H., Ruoslahti E., Ely K.R.J. Mol. Biol. 236:1079-1092(1994)
2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region.Leahy D.J., Aukhil I., Erickson H.P.Cell 84:155-164(1996)
Crystal structure of a heparin- and integrin-binding segment of human fibronectin.Sharma A., Askari J.A., Humphries M.J., Jones E.Y., Stuart D.I.EMBO J. 18:1468-1479(1999)
Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates.Gao M., Craig D., Lequin O., Campbell I.D., Vogel V., Schulten K.Proc. Natl. Acad. Sci. U.S.A. 100:14784-14789(2003)
Interdomain association in fibronectin
insight into cryptic sites and fibrillogenesis.Vakonakis I., Staunton D., Rooney L.M., Campbell I.D.EMBO J. 26:2575-2583(2007)
The solution and crystal structures of a module pair from the Staphylococcus aureus-binding site of human fibronectin -- a tale with a twist.Rudino-Pinera E., Ravelli R.B., Sheldrick G.M., Nanao M.H., Korostelev V.V., Werner J.M., Schwarz-Linek U., Potts J.R., Garman E.F.J. Mol. Biol. 368:833-844(2007)
Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains.Bingham R.J., Rudino-Pinera E., Meenan N.A.G., Schwarz-Linek U., Turkenburg J.P., Hoeoek M., Garman E.F., Potts J.R.Proc. Natl. Acad. Sci. U.S.A. 105:12254-12258(2008)
Solution structure of the 11th FN1 domain from human fibronectin 1.RIKEN structural genomics initiative (RSGI)
Submitted (MAR-2008)
to the PDB data bankIdentification and structural analysis of type I collagen sites in complex with fibronectin fragments.Erat M.C., Slatter D.A., Lowe E.D., Millard C.J., Farndale R.W., Campbell I.D., Vakonakis I.Proc. Natl. Acad. Sci. U.S.A. 106:4195-4200(2009)
The consensus coding sequences of human breast and colorectal cancers.Sjoeblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D., Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S., Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J., Dawson D., Willson J.K.V., Gazdar A.F., Hartigan J., Wu L., Liu C., Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N., Vogelstein B., Kinzler K.W., Velculescu V.E.Science 314:268-274(2006)
Mutations in FN1 cause glomerulopathy with fibronectin deposits.Castelletti F., Donadelli R., Banterla F., Hildebrandt F., Zipfel P.F., Bresin E., Otto E., Skerka C., Renieri A., Todeschini M., Caprioli J., Caruso R.M., Artuso R., Remuzzi G., Noris M.Proc. Natl. Acad. Sci. U.S.A. 105:2538-2543(2008)
Initial characterization of the human central proteome.Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.BMC Syst. Biol. 5:17-17(2011)
+Additional computationally mapped references.<p>Provides general information on the entry.