Akt ELISA Kit | AKT1 elisa kit
Akt (Phospho-Ser473) Phospho Sandwich ELISA Kit
Testing Data
(HeLa cells were grown to 90% confluency and were stimulated with EGF 200 ng/mL for 30 minutes. Cells were immediately lysed thereafter and measured for Total Protein Concentration and O.D. 450 nm of Akt P-Ser473 versus untreated HeLa lysates.)
ELISA (EIA)
(Enzyme-Linked Immunosorbent Assay (ELISA) for immunogen phosphor-peptide (left) and non-phospho peptide (right), using Anti-Akt (Phospho-Ser473) Antibody.)
NCBI and Uniprot Product Information
NCBI Description
The serine-threonine protein kinase encoded by the AKT1 gene is catalytically inactive in serum-starved primary and immortalized fibroblasts. AKT1 and the related AKT2 are activated by platelet-derived growth factor. The activation is rapid and specific, and it is abrogated by mutations in the pleckstrin homology domain of AKT1. It was shown that the activation occurs through phosphatidylinositol 3-kinase. In the developing nervous system AKT is a critical mediator of growth factor-induced neuronal survival. Survival factors can suppress apoptosis in a transcription-independent manner by activating the serine/threonine kinase AKT1, which then phosphorylates and inactivates components of the apoptotic machinery. Mutations in this gene have been associated with the Proteus syndrome. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jul 2011]
Uniprot Description
Akt1: an oncogenic AGC kinase that plays a critical role in regulating cell survival and metabolism in many different signaling pathways. Dual phosphorylation is required for its activation. T308 is phosphorylated by PDK1 in the PI3 kinase pathway, and S473 is phosphorylated by mTOR in the mTORC2 pathway. The 'Lys-63'-linked ubiquitination of AKT1 by TRAF6 is important for its translocation to the plasma membrane, phosphorylation, and activation. When Akt is fully phosphorylated it translocates into the nucleus, undergoes 'Lys-48'-polyubiquitination catalyzed by TTC3, leading to its proteosomal degradation. Hyperactive or overexpressed in a number of cancers including breast, prostate, lung, pancreatic, liver, ovarian and colorectal. Over 160 protein substrates are known including many that regulate transcription, metabolism, apoptosis, cell cycle, and growth.
Protein type: EC 2.7.11.1; Protein kinase, Ser/Thr (non-receptor); Protein kinase, AGC; Oncoprotein; Kinase, protein; AGC group; AKT family
Chromosomal Location of Human Ortholog: 14q32.32
Cellular Component: nucleoplasm; microtubule cytoskeleton; mitochondrion; cytoplasm; plasma membrane; spindle; intercellular junction; nucleus; cytosol
Molecular Function: identical protein binding; protein serine/threonine kinase activity; protein binding; phosphatidylinositol-3,4,5-triphosphate binding; enzyme binding; protein kinase C binding; nitric-oxide synthase regulator activity; protein serine/threonine/tyrosine kinase activity; kinase activity; phosphatidylinositol-3,4-bisphosphate binding; ATP binding; protein kinase activity
Biological Process: negative regulation of JNK cascade; positive regulation of nitric oxide biosynthetic process; regulation of myelination; nerve growth factor receptor signaling pathway; protein ubiquitination; glucose homeostasis; regulation of cell migration; protein amino acid phosphorylation; G1/S-specific positive regulation of cyclin-dependent protein kinase activity; germ cell development; positive regulation of glucose import; cell projection organization and biogenesis; protein catabolic process; maternal placenta development; response to food; platelet activation; glycogen biosynthetic process; fibroblast growth factor receptor signaling pathway; positive regulation of nitric-oxide synthase activity; positive regulation of blood vessel endothelial cell migration; glucose metabolic process; positive regulation of lipid biosynthetic process; positive regulation of cell growth; insulin-like growth factor receptor signaling pathway; cellular response to insulin stimulus; response to heat; T cell costimulation; positive regulation of fat cell differentiation; negative regulation of protein kinase activity; striated muscle cell differentiation; positive regulation of transcription from RNA polymerase II promoter; positive regulation of endothelial cell proliferation; positive regulation of transcription factor activity; response to oxidative stress; regulation of nitric-oxide synthase activity; negative regulation of apoptosis; negative regulation of autophagy; negative regulation of fatty acid beta-oxidation; translation; apoptosis; protein amino acid autophosphorylation; regulation of glycogen biosynthetic process; positive regulation of cellular protein metabolic process; positive regulation of glycogen biosynthetic process; negative regulation of cell size; negative regulation of caspase activity; glucose transport; signal transduction; nitric oxide metabolic process; regulation of translation; apoptotic mitochondrial changes; protein kinase B signaling cascade; inflammatory response; nitric oxide biosynthetic process; cell differentiation; activated T cell apoptosis; aging; negative regulation of proteolysis; epidermal growth factor receptor signaling pathway; phosphoinositide-mediated signaling; myelin maintenance in the peripheral nervous system; protein modification process; endocrine pancreas development; positive regulation of peptidyl-serine phosphorylation; osteoblast differentiation; cell proliferation; G-protein coupled receptor protein signaling pathway; peptidyl-serine phosphorylation; protein import into nucleus, translocation; positive regulation of proteasomal ubiquitin-dependent protein catabolic process; insulin receptor signaling pathway; positive regulation of vasoconstriction; innate immune response; gene expression; positive regulation of protein amino acid phosphorylation; blood coagulation; vascular endothelial growth factor receptor signaling pathway; phosphorylation; hyaluronan metabolic process
Disease: Schizophrenia; Cowden Syndrome 6; Proteus Syndrome; Breast Cancer; Ovarian Cancer
Research Articles on AKT1
Similar Products
Product Notes
The Human, Mouse, Rat AKT1 akt1 (Catalog #AAA9511022) is an ELISA Kit and is intended for research purposes only. The product is available for immediate purchase. The AAA9511022 ELISA Kit recognizes Human, Mouse, Rat AKT1. It is sometimes possible for the material contained within the vial of "Akt, ELISA Kit" to become dispersed throughout the inside of the vial, particularly around the seal of said vial, during shipment and storage. We always suggest centrifuging these vials to consolidate all of the liquid away from the lid and to the bottom of the vial prior to opening. Please be advised that certain products may require dry ice for shipping and that, if this is the case, an additional dry ice fee may also be required.Precautions
All products in the AAA Biotech catalog are strictly for research-use only, and are absolutely not suitable for use in any sort of medical, therapeutic, prophylactic, in-vivo, or diagnostic capacity. By purchasing a product from AAA Biotech, you are explicitly certifying that said products will be properly tested and used in line with industry standard. AAA Biotech and its authorized distribution partners reserve the right to refuse to fulfill any order if we have any indication that a purchaser may be intending to use a product outside of our accepted criteria.Disclaimer
Though we do strive to guarantee the information represented in this datasheet, AAA Biotech cannot be held responsible for any oversights or imprecisions. AAA Biotech reserves the right to adjust any aspect of this datasheet at any time and without notice. It is the responsibility of the customer to inform AAA Biotech of any product performance issues observed or experienced within 30 days of receipt of said product. To see additional details on this or any of our other policies, please see our Terms & Conditions page.Item has been added to Shopping Cart
If you are ready to order, navigate to Shopping Cart and get ready to checkout.