Rat Hypoxia-inducible factor 1-alpha ELISA Kit | Hif1a elisa kit
Rat Hypoxia-inducible factor 1-alpha ELISA Kit
Principle of the Assay: The microtiter plate provided in this kit has been pre-coated with an antibody specific to target antigen. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody preparation specific for target antigen and then avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. Then a TMB substrate solution is added to each well. Only those wells that contain target antigen, biotin-conjugated antibody and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of a sulphuric acid solution and the color change is measured spectrophotometrically at a wavelength of 450 nm +/- 2 nm. The concentration of target antigen in the samples is then determined by comparing the O.D. of the samples to the standard curve.
NCBI and Uniprot Product Information
NCBI Description
regulates transcription in response to low oxygen; may play a role in vascular biology [RGD, Feb 2006]
Uniprot Description
HIF1A: a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Binds to core DNA sequence 5'-[AG]CGTG-3' within the hypoxia response element (HRE) of target gene promoters. Activation requires recruitment of transcriptional coactivators such as CREBPB and EP300. Activity is enhanced by interaction with both, NCOA1 or NCOA2. Interaction with redox regulatory protein APEX seems to activate CTAD and potentiates activation by NCOA1 and CREBBP. Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia. Interacts with the HIF1A beta/ARNT subunit; heterodimerization is required for DNA binding. Interacts with COPS5; the interaction increases the transcriptional activity of HIF1A through increased stability. Interacts with EP300 (via TAZ-type 1 domains); the interaction is stimulated in response to hypoxia and inhibited by CITED2. Interacts with CREBBP (via TAZ-type 1 domains). Interacts with NCOA1, NCOA2, APEX and HSP90. Interacts (hydroxylated within the ODD domain) with VHLL (via beta domain); the interaction, leads to polyubiquitination and subsequent HIF1A proteasomal degradation. During hypoxia, sumoylated HIF1A also binds VHL; the interaction promotes the ubiquitination of HIF1A. Interacts with SENP1; the interaction desumoylates HIF1A resulting in stabilization and activation of transcription. Interacts (Via the ODD domain) with ARD1A; the interaction appears not to acetylate HIF1A nor have any affect on protein stability, during hypoxia. Interacts with RWDD3; the interaction enhances HIF1A sumoylation. Interacts with TSGA10. Interacts with RORA (via the DNA binding domain); the interaction enhances HIF1A transcription under hypoxia through increasing protein stability. Interaction with PSMA7 inhibits the transactivation activity of HIF1A under both normoxic and hypoxia- mimicking conditions. Interacts with USP20. Interacts with RACK1; promotes HIF1A ubiquitination and proteasome- mediated degradation. Interacts (via N-terminus) with USP19. Under reduced oxygen tension. Induced also by various receptor-mediated factors such as growth factors, cytokines, and circulatory factors such as PDGF, EGF, FGF2, IGF2, TGFB1, HGF, TNF, IL1B, angiotensin-2 and thrombin. However, this induction is less intense than that stimulated by hypoxia. Repressed by HIPK2 and LIMD1. Expressed in most tissues with highest levels in kidney and heart. Overexpressed in the majority of common human cancers and their metastases, due to the presence of intratumoral hypoxia and as a result of mutations in genes encoding oncoproteins and tumor suppressors. 2 isoforms of the human protein are produced by alternative splicing.
Protein type: Transcription factor; Autophagy; DNA-binding
Cellular Component: cytoplasm; cytosol; nuclear speck; nucleolus; nucleus; transcription factor complex
Molecular Function: DNA binding; enzyme binding; histone acetyltransferase binding; histone deacetylase binding; Hsp90 protein binding; nuclear hormone receptor binding; protein binding; protein complex binding; protein dimerization activity; protein heterodimerization activity; protein kinase binding; RNA polymerase II transcription factor activity, enhancer binding; sequence-specific DNA binding; transcription factor activity; transcription factor binding; ubiquitin protein ligase binding
Biological Process: acute-phase response; angiogenesis; axon transport of mitochondrion; B-1 B cell homeostasis; blood vessel development; blood vessel morphogenesis; camera-type eye morphogenesis; cartilage development; cell differentiation; cellular iron ion homeostasis; cellular response to insulin stimulus; cerebral cortex development; collagen metabolic process; connective tissue replacement during inflammatory response; digestive tract morphogenesis; elastin metabolic process; embryonic hemopoiesis; embryonic placenta development; epithelial to mesenchymal transition; glucose homeostasis; heart looping; hemoglobin biosynthetic process; lactate metabolic process; lactation; maternal process involved in pregnancy; muscle maintenance; negative regulation of apoptosis; negative regulation of bone mineralization; negative regulation of growth; negative regulation of neuron apoptosis; negative regulation of ossification; negative regulation of TOR signaling pathway; negative regulation of transcription from RNA polymerase II promoter; negative regulation of vasoconstriction; neural crest cell migration; neural fold elevation formation; oxygen homeostasis; positive regulation of apoptosis; positive regulation of autophagy; positive regulation of cell proliferation; positive regulation of cell size; positive regulation of erythrocyte differentiation; positive regulation of gluconeogenesis; positive regulation of hormone biosynthetic process; positive regulation of macroautophagy; positive regulation of neuroblast proliferation; positive regulation of smooth muscle cell proliferation; positive regulation of transcription from RNA polymerase II promoter; positive regulation of transcription, DNA-dependent; positive regulation of vascular endothelial growth factor receptor signaling pathway; regulation of catalytic activity; regulation of cell proliferation; regulation of gene expression; regulation of glycolysis; regulation of transcription from RNA polymerase II promoter in response to oxidative stress; regulation of transcription, DNA-dependent; regulation of transforming growth factor-beta2 production; response to activity; response to alkaloid; response to cobalt ion; response to drug; response to estradiol stimulus; response to estrogen stimulus; response to glucocorticoid stimulus; response to glucose stimulus; response to hypoxia; response to mechanical stimulus; response to muscle activity; response to purine; response to salt stress; response to X-ray; signal transduction; transcription from RNA polymerase II promoter; transcription, DNA-dependent; vasculature development; visual learning
Research Articles on Hif1a
Similar Products
Product Notes
The Rat Hif1a hif1a (Catalog #AAA2886832) is an ELISA Kit and is intended for research purposes only. The product is available for immediate purchase. The AAA2886832 ELISA Kit recognizes Rat Hif1a. It is sometimes possible for the material contained within the vial of "Hypoxia-inducible factor 1-alpha, ELISA Kit" to become dispersed throughout the inside of the vial, particularly around the seal of said vial, during shipment and storage. We always suggest centrifuging these vials to consolidate all of the liquid away from the lid and to the bottom of the vial prior to opening. Please be advised that certain products may require dry ice for shipping and that, if this is the case, an additional dry ice fee may also be required.Precautions
All products in the AAA Biotech catalog are strictly for research-use only, and are absolutely not suitable for use in any sort of medical, therapeutic, prophylactic, in-vivo, or diagnostic capacity. By purchasing a product from AAA Biotech, you are explicitly certifying that said products will be properly tested and used in line with industry standard. AAA Biotech and its authorized distribution partners reserve the right to refuse to fulfill any order if we have any indication that a purchaser may be intending to use a product outside of our accepted criteria.Disclaimer
Though we do strive to guarantee the information represented in this datasheet, AAA Biotech cannot be held responsible for any oversights or imprecisions. AAA Biotech reserves the right to adjust any aspect of this datasheet at any time and without notice. It is the responsibility of the customer to inform AAA Biotech of any product performance issues observed or experienced within 30 days of receipt of said product. To see additional details on this or any of our other policies, please see our Terms & Conditions page.Item has been added to Shopping Cart
If you are ready to order, navigate to Shopping Cart and get ready to checkout.