Loading...

Skip to main content

Call us on + 1 (800) 604-9114 for more information about our products

Looking for specific datasheet Manual/COA/MSDS?
Request a Manual/COA/MSDS

Interested to get a quote about our products?
Request a Quote

SDS-Page

Transforming Growth Factor Beta-1/TGFB1 Recombinant Protein | TGFB1 recombinant protein

Recombinant Human Transforming Growth Factor Beta-1/TGFB1

Gene Names
TGFB1; CED; LAP; DPD1; TGFB; TGFbeta
Purity
>95% as determined by reducing SDS-PAGE
Synonyms
Transforming Growth Factor Beta-1/TGFB1; Recombinant Human Transforming Growth Factor Beta-1/TGFB1; Transforming Growth Factor Beta-1; TGF-Beta-1; Latency-Associated Peptide; LAP; TGFB1; TGFB; TGFB1 recombinant protein
Ordering
For Research Use Only!
Host
Human Cells
Purity/Purification
>95% as determined by reducing SDS-PAGE
Form/Format
Lyophilized from a 0.2um filtered solution of PBS, pH7.4.
Sequence
Leu30-Arg278(Cys33Ser)
Species
Human
Endotoxin
<1.0EU per ug as determined by the LAL method.
Protein Construction
Recombinant Human Transforming Growth Factor beta 1 is produced by our Mammalian expression system and the target gene encoding Leu30-Arg278(Cys33Ser) is expressed.
Preparation and Storage
Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80 degree C. Reconstituted protein solution can be stored at 4-8 degree C for 2-7 days. Aliquots of reconstituted samples are stable at < -20 degree C for 3 months.
This product is provided as lyophilized powder which is shipped with ice packs.

SDS-Page

SDS-Page
Related Product Information for TGFB1 recombinant protein
Transforming Growth Factor beta-1 (TGFbeta-1) is a secreted protein which belongs to the TGF-beta family. TGFbeta-1 is abundantly expressed in bone, articular cartilage and chondrocytes and is increased in osteoarthritis (OA). TGFbeta-1 performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation and apoptosis. The precursor is cleaved into a latency-associated peptide (LAP) and a mature TGFbeta-1 peptide.Disulfide-linked homodimers of LAP and TGF-beta 1 remain non-covalently associated after secretion, forming the small latent TGF-beta 1 complex. Purified LAP is also capable of associating with active TGF-beta with high affinity, and can neutralize TGF-beta activity. Covalent linkage of LAP to one of three latent TGF-beta binding proteins (LTBPs) creates a large latent complex that may interact with the extracellular matrix. TGF-beta activation from latency is controlled both spatially and temporally, by multiple pathways that include actions of proteases such as plasmin and MMP9, and/or by thrombospondin 1 or selected integrins. Although different isoforms of TGF-beta are naturally associated with their own distinct LAPs, the TGF-beta 1 LAP is capable of complexing with, and inactivating, all other human TGF-beta isoforms and those of most other species. Mutations within the LAP are associated with Camurati-Engelmann disease, a rare sclerosing bone dysplasia characterized by inappropriate presence of active TGF-beta 1.
Product Categories/Family for TGFB1 recombinant protein

NCBI and Uniprot Product Information

NCBI GI #
NCBI GeneID
NCBI Accession #
NCBI GenBank Nucleotide #
UniProt Accession #
Molecular Weight
44,341 Da
NCBI Official Full Name
transforming growth factor beta-1
NCBI Official Synonym Full Names
transforming growth factor, beta 1
NCBI Official Symbol
TGFB1
NCBI Official Synonym Symbols
CED; LAP; DPD1; TGFB; TGFbeta
NCBI Protein Information
transforming growth factor beta-1; TGF-beta-1; TGF-beta 1 protein; latency-associated peptide
UniProt Protein Name
Transforming growth factor beta-1
UniProt Gene Name
TGFB1
UniProt Synonym Gene Names
TGFB; TGF-beta-1; LAP
UniProt Entry Name
TGFB1_HUMAN

NCBI Description

This gene encodes a member of the transforming growth factor beta (TGFB) family of cytokines, which are multifunctional peptides that regulate proliferation, differentiation, adhesion, migration, and other functions in many cell types. Many cells have TGFB receptors, and the protein positively and negatively regulates many other growth factors. The secreted protein is cleaved into a latency-associated peptide (LAP) and a mature TGFB1 peptide, and is found in either a latent form composed of a TGFB1 homodimer, a LAP homodimer, and a latent TGFB1-binding protein, or in an active form composed of a TGFB1 homodimer. The mature peptide may also form heterodimers with other TGFB family members. This gene is frequently upregulated in tumor cells, and mutations in this gene result in Camurati-Engelmann disease.[provided by RefSeq, Oct 2009]

Uniprot Description

TGFB1: Multifunctional protein that controls proliferation, differentiation and other functions in many cell types. Many cells synthesize TGFB1 and have specific receptors for it. It positively and negatively regulates many other growth factors. It plays an important role in bone remodeling as it is a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts. Homodimer; disulfide-linked, or heterodimer with TGFB2. Secreted and stored as a biologically inactive form in the extracellular matrix in a 290 kDa complex (large latent TGF-beta1 complex) containing the TGFB1 homodimer, the latency-associated peptide (LAP), and the latent TGFB1 binding protein-1 (LTBP1). The complex without LTBP1 is known as the'small latent TGF-beta1 complex'. Dissociation of the TGFB1 from LAP is required for growth factor activation and biological activity. Release of the large latent TGF-beta1 complex from the extracellular matrix is carried out by the matrix metalloproteinase MMP3. May interact with THSD4; this interaction may lead to sequestration by FBN1 microfibril assembly and attenuation of TGFB signaling. Interacts with the serine proteases, HTRA1 and HTRA3: the interaction with either inhibits TGFB1-mediated signaling. The HTRA protease activity is required for this inhibition. Interacts with CD109, DPT and ASPN. Activated in vitro at pH below 3.5 and over 12.5. Highly expressed in bone. Abundantly expressed in articular cartilage and chondrocytes and is increased in osteoarthritis (OA). Co-localizes with ASPN in chondrocytes within OA lesions of articular cartilage. Belongs to the TGF-beta family.

Protein type: Motility/polarity/chemotaxis; Secreted; Secreted, signal peptide

Chromosomal Location of Human Ortholog: 19q13.1

Cellular Component: extracellular space; proteinaceous extracellular matrix; microvillus; cell surface; cell soma; Golgi lumen; axon; cytoplasm; extracellular region; plasma membrane; nucleus

Molecular Function: protein binding; protein homodimerization activity; enzyme binding; growth factor activity; protein heterodimerization activity; punt binding; cytokine activity; protein N-terminus binding; glycoprotein binding; antigen binding

Biological Process: extracellular matrix organization and biogenesis; positive regulation of apoptosis; positive regulation of transcription, DNA-dependent; SMAD protein nuclear translocation; female pregnancy; positive regulation of protein amino acid dephosphorylation; activation of NF-kappaB transcription factor; regulation of protein import into nucleus; positive regulation of MAP kinase activity; connective tissue replacement during inflammatory response; regulation of transforming growth factor beta receptor signaling pathway; negative regulation of ossification; cell cycle arrest; inner ear development; positive regulation of isotype switching to IgA isotypes; regulatory T cell differentiation; response to drug; positive regulation of interleukin-17 production; positive regulation of chemotaxis; positive regulation of smooth muscle cell differentiation; active induction of host immune response by virus; positive regulation of blood vessel endothelial cell migration; regulation of sodium ion transport; negative regulation of blood vessel endothelial cell migration; negative regulation of fat cell differentiation; lymph node development; positive regulation of protein secretion; positive regulation of transcription from RNA polymerase II promoter; response to progesterone stimulus; endoderm development; myelination; positive regulation of odontogenesis; negative regulation of phagocytosis; evasion of host defenses by virus; positive regulation of cellular protein metabolic process; myeloid dendritic cell differentiation; negative regulation of transcription from RNA polymerase II promoter; phosphate metabolic process; negative regulation of cell proliferation; negative regulation of T cell proliferation; ureteric bud development; regulation of DNA binding; negative regulation of release of sequestered calcium ion into cytosol; salivary gland morphogenesis; positive regulation of cell proliferation; protein kinase B signaling cascade; protein export from nucleus; inflammatory response; positive regulation of exit from mitosis; aging; epidermal growth factor receptor signaling pathway; mitotic cell cycle checkpoint; common-partner SMAD protein phosphorylation; positive regulation of phosphoinositide 3-kinase activity; positive regulation of bone mineralization; positive regulation of peptidyl-serine phosphorylation; SMAD protein complex assembly; positive regulation of protein kinase B signaling cascade; positive regulation of protein complex assembly; positive regulation of protein import into nucleus; response to hypoxia; epithelial to mesenchymal transition; negative regulation of cell growth; negative regulation of cell-cell adhesion; negative regulation of transforming growth factor beta receptor signaling pathway; negative regulation of skeletal muscle development; mononuclear cell proliferation; regulation of cell migration; protein amino acid phosphorylation; hyaluronan catabolic process; regulation of apoptosis; response to vitamin D; negative regulation of neuroblast proliferation; receptor catabolic process; positive regulation of superoxide release; transforming growth factor beta receptor signaling pathway; germ cell migration; response to glucose stimulus; chondrocyte differentiation; defense response to fungus, incompatible interaction; T cell homeostasis; negative regulation of mitotic cell cycle; cell growth; tolerance induction to self antigen; regulation of striated muscle development; platelet activation; organ regeneration; negative regulation of DNA replication; virus-host interaction; hemopoietic progenitor cell differentiation; negative regulation of transcription, DNA-dependent; positive regulation of epithelial cell proliferation; positive regulation of collagen biosynthetic process; viral infectious cycle; response to estradiol stimulus; negative regulation of cell cycle; positive regulation of histone deacetylation; response to radiation; platelet degranulation; negative regulation of protein amino acid phosphorylation; lipopolysaccharide-mediated signaling pathway; response to wounding; adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains; negative regulation of epithelial cell proliferation; intercellular junction assembly and maintenance; regulation of binding; MAPKKK cascade; cellular calcium ion homeostasis; gut development; protein import into nucleus, translocation; ATP biosynthetic process; positive regulation of histone acetylation; positive regulation of protein amino acid phosphorylation; negative regulation of myoblast differentiation; blood coagulation; positive regulation of cell migration

Disease: Cystic Fibrosis; Camurati-engelmann Disease

Research Articles on TGFB1

Similar Products

Product Notes

The TGFB1 tgfb1 (Catalog #AAA2569130) is a Recombinant Protein produced from Human Cells and is intended for research purposes only. The product is available for immediate purchase. The amino acid sequence is listed below: Leu30-Arg2 78(Cys33Se r). It is sometimes possible for the material contained within the vial of "Transforming Growth Factor Beta-1/TGFB1, Recombinant Protein" to become dispersed throughout the inside of the vial, particularly around the seal of said vial, during shipment and storage. We always suggest centrifuging these vials to consolidate all of the liquid away from the lid and to the bottom of the vial prior to opening. Please be advised that certain products may require dry ice for shipping and that, if this is the case, an additional dry ice fee may also be required.

Precautions

All products in the AAA Biotech catalog are strictly for research-use only, and are absolutely not suitable for use in any sort of medical, therapeutic, prophylactic, in-vivo, or diagnostic capacity. By purchasing a product from AAA Biotech, you are explicitly certifying that said products will be properly tested and used in line with industry standard. AAA Biotech and its authorized distribution partners reserve the right to refuse to fulfill any order if we have any indication that a purchaser may be intending to use a product outside of our accepted criteria.

Disclaimer

Though we do strive to guarantee the information represented in this datasheet, AAA Biotech cannot be held responsible for any oversights or imprecisions. AAA Biotech reserves the right to adjust any aspect of this datasheet at any time and without notice. It is the responsibility of the customer to inform AAA Biotech of any product performance issues observed or experienced within 30 days of receipt of said product. To see additional details on this or any of our other policies, please see our Terms & Conditions page.

Item has been added to Shopping Cart

If you are ready to order, navigate to Shopping Cart and get ready to checkout.

Looking for a specific manual?
Request a Manual

Request more Information

Please complete the form below and a representative will contact you as soon as possible.

Request a Manual

Please complete the form below and a representative will contact you as soon as possible.

Request a Quote

Please complete the form below and a representative will contact you as soon as possible.