Loading...

Skip to main content

Call us on + 1 (800) 604-9114 for more information about our products

Looking for specific datasheet Manual/COA/MSDS?
Request a Manual/COA/MSDS

Interested to get a quote about our products?
Request a Quote

Western Blot (WB) (Western blot analysis of p300 expression in HepG2 cells.The lane on the left is treated with the antigen-specific peptide.)

Rabbit anti-Human, Mouse p300 Polyclonal Antibody | anti-EP300 antibody

p300 Antibody

Gene Names
EP300; p300; KAT3B; RSTS2
Reactivity
Human, Mouse
Applications
Western Blot, Immunohistochemistry, ELISA
Purity
The antiserum was purified by peptide affinity chromatography using SulfoLink Coupling Resin.
Synonyms
p300; Polyclonal Antibody; p300 Antibody; E1A associated protein p300; E1A binding protein p300; E1A-associated protein p300; EP300; EP300: E1A binding protein p300; EP300_HUMAN; Histone acetyltransferase p300; KAT3B; p300 HAT; RSTS2; anti-EP300 antibody
Ordering
For Research Use Only!
Host
Rabbit
Reactivity
Human, Mouse
Clonality
Polyclonal
Isotype
IgG
Specificity
p300 antibody detects endogenous levels of total p300
Purity/Purification
The antiserum was purified by peptide affinity chromatography using SulfoLink Coupling Resin.
Form/Format
Liquid
Phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Concentration
1mg/ml (varies by lot)
Sequence Length
2414
Applicable Applications for anti-EP300 antibody
Western Blot (WB), Immunohistochemistry (IHC), ELISA (EIA)
Application Notes
WB: 1:500-1:2000
IHC: 1:50-1:200
Immunogen
A synthesized peptide derived from human p300
Subcellular Location
Cytoplasm. Nucleus. In the presence of ALX1 relocalizes from the cytoplasm to the nucleus. Colocalizes with ROCK2 in the nucleus.
Predicted Cross Reactivity
Bovine, Horse, Sheep, Rabbit, Chicken, Xenopus
Similarity
Bovine (100%), Horse (100%), Sheep (100%), Rabbit (100%), Chicken (100%), Xenopus (82%)
Conjugation
Unconjugated
Preparation and Storage
Store at -20 degree C. Stable for 12 months from date of receipt.

Western Blot (WB)

(Western blot analysis of p300 expression in HepG2 cells.The lane on the left is treated with the antigen-specific peptide.)

Western Blot (WB) (Western blot analysis of p300 expression in HepG2 cells.The lane on the left is treated with the antigen-specific peptide.)

Immunohistochemistry (IHC)

(MBS9601532 at 1/100 staining Mouse brain tissue by IHC-P. The sample was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The sample was then blocked and incubated with the antibody for 1.5 hours at 22 degree C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.)

Immunohistochemistry (IHC) (MBS9601532 at 1/100 staining Mouse brain tissue by IHC-P. The sample was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The sample was then blocked and incubated with the antibody for 1.5 hours at 22 degree C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.)
Related Product Information for anti-EP300 antibody
Function: Functions as histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability. Mediates acetylation of histone H3 at 'Lys-27' (H3K27ac) (PubMed:23911289). Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates BCL6 wich disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degragation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA) or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation or propionylation, respectively (PubMed:25818647, PubMed:17267393). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (E)-but-2-enoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393).
Subunit Structure: Interacts with phosphorylated CREB1. Interacts with HIF1A; the interaction is stimulated in response to hypoxia and inhibited by CITED2. Interacts (via N-terminus) with TFAP2A (via N-terminus); the interaction requires CITED2. Interacts (via CH1 domain) with CITED2 (via C-terminus). Interacts with CITED1 (unphosphorylated form preferentially and via C-terminus). Interacts with ESR1; the interaction is estrogen-dependent and enhanced by CITED1. Interacts with DTX1, EID1, ELF3, FEN1, LEF1, NCOA1, NCOA6, NR3C1, PCAF, PELP1, PRDM6, SP1, SP3, SPIB, SRY, TCF7L2, TP53, DDX5, DDX17, SATB1, SRCAP, TTC5, JMY and TRERF1. The TAZ-type 1 domain interacts with HIF1A. Probably part of a complex with HIF1A and CREBBP. Part of a complex containing CARM1 and NCOA2/GRIP1. Interacts with ING4 and this interaction may be indirect. Interacts with ING5. Interacts with the C-terminal region of CITED4. Non-sumoylated EP300 preferentially interacts with SENP3. Interacts with SS18L1/CREST. Interacts with ALX1 (via homeobox domain). Interacts with NEUROD1; the interaction is inhibited by NR0B2. Interacts with TCF3. Interacts (via CREB-binding domain) with MYOCD (via C-terminus). Binds to HIPK2. Interacts with ROCK2 and PPARG. Forms a complex made of CDK9, CCNT1/cyclin-T1, EP300 and GATA4 that stimulates hypertrophy in cardiomyocytes. Interacts with IRF1 and this interaction enhances acetylation of p53/TP53 and stimulation of its activity. Interacts with FOXO1; the interaction acetylates FOXO1 and enhances its transcriptional activity. Interacts with ALKBH4 and DDIT3/CHOP. Interacts with KLF15. Interacts with CEBPB and RORA. Interacts with HTLV-1 Tax and p30II. Interacts with and acetylates HIV-1 Tat. Interacts with NPAS2, ARNTL/BMAL1 and CLOCK. Interacts with SIRT2 isoform 1, isoform 2 and isoform 5. Interacts with MTA1. Interacts with HDAC4 and HDAC5 in the presence of TFAP2C (PubMed:10545121, PubMed:10722728, PubMed:10823961, PubMed:11073989, PubMed:11073990, PubMed:11080476, PubMed:11349124, PubMed:11430825, PubMed:11463834, PubMed:11481323, PubMed:11518699, PubMed:11559821, PubMed:11564735, PubMed:11581164, PubMed:11581372, PubMed:11701890, PubMed:11744733, PubMed:11864910, PubMed:11959990, PubMed:11997499, PubMed:12446687, PubMed:12527917, PubMed:12586840, PubMed:12750254, PubMed:12778114, PubMed:12837748, PubMed:12929931, PubMed:14605447, PubMed:14645221, PubMed:14716005, PubMed:14752053, PubMed:15075319, PubMed:15186775, PubMed:15297880, PubMed:15509808, PubMed:15731352, PubMed:15890677, PubMed:16478997, PubMed:16574662, PubMed:16617102, PubMed:16864582, PubMed:17226766, PubMed:17872950, PubMed:18273021, PubMed:19217391, PubMed:19680224, PubMed:20081228, PubMed:23145062, PubMed:23999430, PubMed:24177535, PubMed:24413532, PubMed:8684459, PubMed:8917528, PubMed:9528808, PubMed:9590696, PubMed:9862959, PubMed:9887100). Interacts with TRIP4 (PubMed:25219498). Directly interacts with ZBTB49; this interaction leads to synergistic transactivation of CDKN1A (PubMed:25245946). Interacts with NR4A3 (By similarity). Interacts with ZNF451 (PubMed:24324267). Interacts with ATF5; EP300 is required for ATF5 and CEBPB interaction and DNA binding (By similarity). Interacts with HSF1 (PubMed:27189267). Interacts with ZBTB48/TZAP (PubMed:24382891). Interacts with STAT1; the interaction is enhanced upon IFN-gamma stimulation (PubMed:26479788). Interacts with HNRNPU (via C-terminus); this interaction enhances DNA-binding of HNRNPU to nuclear scaffold/matrix attachment region (S/MAR) elements (PubMed:11909954). Interacts with BCL11B (PubMed:27959755, PubMed:16809611).
Post-translational Modifications: Acetylated on Lys at up to 17 positions by intermolecular autocatalysis. Deacetylated in the transcriptional repression domain (CRD1) by SIRT1, preferentially at Lys-1020. Deacetylated by SIRT2, preferentially at Lys-418, Lys-423, Lys-1542, Lys-1546, Lys-1549, Lys-1699, Lys-1704 and Lys-1707. Citrullinated at Arg-2142 by PADI4, which impairs methylation by CARM1 and promotes interaction with NCOA2/GRIP1. Methylated at Arg-580 and Arg-604 in the KIX domain by CARM1, which blocks association with CREB, inhibits CREB signaling and activates apoptotic response. Also methylated at Arg-2142 by CARM1, which impairs interaction with NCOA2/GRIP1. Sumoylated; sumoylation in the transcriptional repression domain (CRD1) mediates transcriptional repression. Desumoylated by SENP3 through the removal of SUMO2 and SUMO3. Probable target of ubiquitination by FBXO3, leading to rapid proteasome-dependent degradation. Phosphorylated by HIPK2 in a RUNX1-dependent manner. This phosphorylation that activates EP300 happens when RUNX1 is associated with DNA and CBFB. Phosphorylated by ROCK2 and this enhances its activity. Phosphorylation at Ser-89 by AMPK reduces interaction with nuclear receptors, such as PPARG.
Similarity: The CRD1 domain (cell cycle regulatory domain 1) mediates transcriptional repression of a subset of p300 responsive genes; it can be de-repressed by CDKN1A/p21WAF1 at least at some promoters. It conatins sumoylation and acetylation sites and the same lysine residues may be targeted for the respective modifications. It is proposed that deacetylation by SIRT1 allows sumoylation leading to suppressed activity.

NCBI and Uniprot Product Information

NCBI GI #
NCBI GeneID
NCBI Accession #
NCBI GenBank Nucleotide #
UniProt Accession #
Molecular Weight
Observed: 300 kDa
Predicted: 265 kDa
NCBI Official Full Name
histone acetyltransferase p300 isoform 1
NCBI Official Synonym Full Names
E1A binding protein p300
NCBI Official Symbol
EP300
NCBI Official Synonym Symbols
p300; KAT3B; RSTS2
NCBI Protein Information
histone acetyltransferase p300
UniProt Protein Name
Histone acetyltransferase p300
Protein Family
UniProt Gene Name
EP300
UniProt Synonym Gene Names
P300; p300 HAT

NCBI Description

This gene encodes the adenovirus E1A-associated cellular p300 transcriptional co-activator protein. It functions as histone acetyltransferase that regulates transcription via chromatin remodeling and is important in the processes of cell proliferation and differentiation. It mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. This gene has also been identified as a co-activator of HIF1A (hypoxia-inducible factor 1 alpha), and thus plays a role in the stimulation of hypoxia-induced genes such as VEGF. Defects in this gene are a cause of Rubinstein-Taybi syndrome and may also play a role in epithelial cancer. [provided by RefSeq, Jul 2008]

Uniprot Description

Functions as histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability. Mediates acetylation of histone H3 at 'Lys-27' (H3K27ac) (PubMed:23911289). Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates BCL6 wich disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degragation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA) or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation or propionylation, respectively (PubMed:25818647, PubMed:17267393). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (E)-but-2-enoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493).

Research Articles on EP300

Similar Products

Product Notes

The EP300 ep300 (Catalog #AAA9601532) is an Antibody produced from Rabbit and is intended for research purposes only. The product is available for immediate purchase. The p300 Antibody reacts with Human, Mouse and may cross-react with other species as described in the data sheet. AAA Biotech's p300 can be used in a range of immunoassay formats including, but not limited to, Western Blot (WB), Immunohistochemistry (IHC), ELISA (EIA). WB: 1:500-1:2000 IHC: 1:50-1:200. Researchers should empirically determine the suitability of the EP300 ep300 for an application not listed in the data sheet. Researchers commonly develop new applications and it is an integral, important part of the investigative research process. It is sometimes possible for the material contained within the vial of "p300, Polyclonal Antibody" to become dispersed throughout the inside of the vial, particularly around the seal of said vial, during shipment and storage. We always suggest centrifuging these vials to consolidate all of the liquid away from the lid and to the bottom of the vial prior to opening. Please be advised that certain products may require dry ice for shipping and that, if this is the case, an additional dry ice fee may also be required.

Precautions

All products in the AAA Biotech catalog are strictly for research-use only, and are absolutely not suitable for use in any sort of medical, therapeutic, prophylactic, in-vivo, or diagnostic capacity. By purchasing a product from AAA Biotech, you are explicitly certifying that said products will be properly tested and used in line with industry standard. AAA Biotech and its authorized distribution partners reserve the right to refuse to fulfill any order if we have any indication that a purchaser may be intending to use a product outside of our accepted criteria.

Disclaimer

Though we do strive to guarantee the information represented in this datasheet, AAA Biotech cannot be held responsible for any oversights or imprecisions. AAA Biotech reserves the right to adjust any aspect of this datasheet at any time and without notice. It is the responsibility of the customer to inform AAA Biotech of any product performance issues observed or experienced within 30 days of receipt of said product. To see additional details on this or any of our other policies, please see our Terms & Conditions page.

Item has been added to Shopping Cart

If you are ready to order, navigate to Shopping Cart and get ready to checkout.

Looking for a specific manual?
Request a Manual

Request more Information

Please complete the form below and a representative will contact you as soon as possible.

Request a Manual

Please complete the form below and a representative will contact you as soon as possible.

Request a Quote

Please complete the form below and a representative will contact you as soon as possible.