Rabbit INSR Polyclonal Antibody | anti-INSR antibody
INSR antibody - middle region
Target Description: This receptor binds insulin and has a tyrosine-protein kinase activity. Isoform Short has a higher affinity for insulin. INSR mediates the metabolic functions of insulin. INSR binding to insulin stimulates association of the receptor with downstream mediators including IRS1 and phosphatidylinositol 3'-kinase (PI3K). INSR can activate PI3K either directly by binding to the p85 regulatory subunit, or indirectly via IRS1. When present in a hybrid receptor with IGF1R, it binds IGF1.A report shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, another report shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.After removal of the precursor signal peptide, the insulin receptor precursor is post-translationally cleaved into two chains (alpha and beta) that are covalently linked. Binding of insulin to the insulin receptor (INSR) stimulates glucose uptake. Two transcript variants encoding different isoforms have been found for this gene.
NCBI and Uniprot Product Information
NCBI Description
This gene encodes a member of the receptor tyrosine kinase family of proteins. The encoded preproprotein is proteolytically processed to generate alpha and beta subunits that form a heterotetrameric receptor. Binding of insulin or other ligands to this receptor activates the insulin signaling pathway, which regulates glucose uptake and release, as well as the synthesis and storage of carbohydrates, lipids and protein. Mutations in this gene underlie the inherited severe insulin resistance syndromes including type A insulin resistance syndrome, Donohue syndrome and Rabson-Mendenhall syndrome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2015]
Uniprot Description
INSR: a receptor tyrosine kinase that mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). The holoenzyme is cleaved into two chains, the alpha and beta subunits. The active complex is a tetramer containing 2 alpha and 2 beta chains linked by disulfide bonds. The alpha chains constitute the ligand- binding domain, while the beta chains carry the kinase domain. Interacts with SORBS1 but dissociates from it following insulin stimulation. Familial mutations associated with insulin resistant diabetes, acanthosis nigricans, pineal hyperplasia, and polycystic ovary syndrome. SNP variants may be associated with polycystic ovary syndrome, atypical migraine and diabetic hyperlipidemia. Mutations also cause leprechaunism, a severe insulin resistance syndrome causing growth retardation and death in early infancy. Two isoforms of the human protein are produced by alternative splicing. The Short isoform has a higher affinity for insulin than the longer. Isoform Long and isoform Short are predominantly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic acini, placenta vascular endothelium, fibroblasts, monocytes, granulocytes, erythrocytes and skin. Isoform Short is preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney. Found as a hybrid receptor with IGF1R in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta. Overexpressed in several tumors, including breast, colon, lung, ovary, and thyroid carcinomas.
Protein type: EC 2.7.10.1; Membrane protein, integral; Protein kinase, TK; Kinase, protein; Protein kinase, tyrosine (receptor); TK group; InsR family
Chromosomal Location of Human Ortholog: 19p13.3-p13.2
Cellular Component: membrane; intracellular membrane-bound organelle; integral to plasma membrane; plasma membrane; endosome membrane; caveola; receptor complex
Molecular Function: insulin binding; insulin-like growth factor receptor binding; protein binding; insulin-like growth factor I binding; GTP binding; protein-tyrosine kinase activity; insulin receptor substrate binding; PTB domain binding; phosphoinositide 3-kinase binding; receptor signaling protein tyrosine kinase activity; insulin-like growth factor II binding; ATP binding; insulin receptor activity
Biological Process: heart morphogenesis; epidermis development; positive regulation of nitric oxide biosynthetic process; peptidyl-tyrosine phosphorylation; activation of MAPK activity; protein amino acid autophosphorylation; positive regulation of glycogen biosynthetic process; regulation of embryonic development; exocrine pancreas development; glucose homeostasis; positive regulation of glucose import; positive regulation of MAPKKK cascade; regulation of transcription, DNA-dependent; male sex determination; positive regulation of cell proliferation; protein heterotetramerization; positive regulation of developmental growth; positive regulation of mitosis; activation of protein kinase B; positive regulation of protein kinase B signaling cascade; G-protein coupled receptor protein signaling pathway; cellular response to insulin stimulus; carbohydrate metabolic process; positive regulation of glycolysis; insulin receptor signaling pathway; activation of protein kinase activity; positive regulation of protein amino acid phosphorylation; positive regulation of DNA replication; transformation of host cell by virus; positive regulation of cell migration
Disease: Diabetes Mellitus, Insulin-resistant, With Acanthosis Nigricans; Hyperinsulinemic Hypoglycemia, Familial, 5; Pineal Hyperplasia, Insulin-resistant Diabetes Mellitus, And Somatic Abnormalities; Donohue Syndrome
Research Articles on INSR
Similar Products
Product Notes
The INSR insr (Catalog #AAA3224423) is an Antibody produced from Rabbit and is intended for research purposes only. The product is available for immediate purchase. The INSR antibody - middle region reacts with Dog, Guinea Pig, Horse, Human, Mouse, Rat, Zebrafish and may cross-react with other species as described in the data sheet. AAA Biotech's INSR can be used in a range of immunoassay formats including, but not limited to, Immunohistochemistry (IHC), Western Blot (WB). Researchers should empirically determine the suitability of the INSR insr for an application not listed in the data sheet. Researchers commonly develop new applications and it is an integral, important part of the investigative research process. The amino acid sequence is listed below: Synthetic peptide located within the following region: SSHCQREEAG GRDGGSSLGF KRSYEEHIPY THMNGGKKNG RILTLPRSNP. It is sometimes possible for the material contained within the vial of "INSR, Polyclonal Antibody" to become dispersed throughout the inside of the vial, particularly around the seal of said vial, during shipment and storage. We always suggest centrifuging these vials to consolidate all of the liquid away from the lid and to the bottom of the vial prior to opening. Please be advised that certain products may require dry ice for shipping and that, if this is the case, an additional dry ice fee may also be required.Precautions
All products in the AAA Biotech catalog are strictly for research-use only, and are absolutely not suitable for use in any sort of medical, therapeutic, prophylactic, in-vivo, or diagnostic capacity. By purchasing a product from AAA Biotech, you are explicitly certifying that said products will be properly tested and used in line with industry standard. AAA Biotech and its authorized distribution partners reserve the right to refuse to fulfill any order if we have any indication that a purchaser may be intending to use a product outside of our accepted criteria.Disclaimer
Though we do strive to guarantee the information represented in this datasheet, AAA Biotech cannot be held responsible for any oversights or imprecisions. AAA Biotech reserves the right to adjust any aspect of this datasheet at any time and without notice. It is the responsibility of the customer to inform AAA Biotech of any product performance issues observed or experienced within 30 days of receipt of said product. To see additional details on this or any of our other policies, please see our Terms & Conditions page.Item has been added to Shopping Cart
If you are ready to order, navigate to Shopping Cart and get ready to checkout.