Loading...

Skip to main content

Call us on + 1 (800) 604-9114 for more information about our products

Looking for specific datasheet Manual/COA/MSDS?
Request a Manual/COA/MSDS

Interested to get a quote about our products?
Request a Quote

TGF beta 1 Cell Lysate | TGFB1 cell lysate

Mouse TGF beta 1 HEK293 Overexpression Lysate

Gene Names
Tgfb1; Tgfb; Tgfb-1; TGFbeta1; TGF-beta1
Applications
Western Blot
Synonyms
TGF beta 1; Mouse TGF beta 1 HEK293 Overexpression Lysate; Mouse TGF-beta 1/TGFB1 HEK293 Cell Lysate (WB positive control); transforming growth factor; beta 1; Mouse TGF-beta1 Overexpression Lysate; Mouse Tgfb Overexpression Lysate; Mouse Tgfb-1 Overexpression Lysate; Mouse TGFbeta1 Overexpression Lysate; TGFB1 cell lysate
Ordering
For Research Use Only!
Host
HEK293 Cells
Form/Format
1x Sample Buffer (1x modified RIPA buffer+1x SDS loading buffer).
Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF.
Sequence Positions
372aa
Sequence
Met1-Ser390
Applicable Applications for TGFB1 cell lysate
Western Blot (WB)
Application Notes
WB: Use at an assay dependent dilution.
Species
Mouse
Recommend Usage
1. Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube.2. Re-dissolve the pellet using 200uL pure water and boil for 2-5 min.
Sequence Construction
A DNA sequence encoding the mouse Latent TGFB1 (P04202) (Met1-Ser390) was expressed with a C-terminal polyhistidine tag.
Preparation Method
Cell lysate was prepared by homogenization of the over-expressed cells in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors. Cell debris was removed by centrifugation. Protein concentration was determined by Bradford assay (protein assay, Microplate Standard assay). The cell lysate was boiled for 5 min in 1 x SDS loading buffer (50mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Preparation and Storage
Store at 4 degree C for up to twelve months from date of receipt. After re-dissolution, aliquot and store at -80 degree C for up to twelve months. Avoid repeated freeze-thaw cycles.
Samples are stable for up to twelve months from date of receipt.
Related Product Information for TGFB1 cell lysate
TGF-beta 1 is a member of the transforming growth factor beta (TGF-beta) family. The transforming growth factor-beta family of polypeptides are involved in the regulation of cellular processes, including cell division, differentiation, motility, adhesion and death. TGF-beta 1 positively and negatively regulates many other growth factors. It inhibits the secretion and activity of many other cytokines including interferon-gamma, tumor necrosis factor-alpha and various interleukins. It can also decrease the expression levels of cytokine receptors. Meanwhile, TGF-beta 1 also increases the expression of certain cytokines in T cells and promotes their proliferation, particularly if the cells are immature. TGF-beta 1 also inhibits proliferation and stimulates apoptosis of B cells, and plays a role in controlling the expression of antibody, transferrin and MHC class II proteins on immature and mature B cells. As for myeloid cells, TGF-beta 1can inhibit their proliferation and prevent their production of reactive oxygen and nitrogen intermediates. However, as with other cell types, TGF-beta 1 also has the opposite effect on cells of myeloid origin. TGF-beta 1 is a multifunctional protein that controls proliferation, differentiation and other functions in many cell types. It plays an important role in bone remodeling as it is a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts. Once cells lose their sensitivity to TGF-beta1-mediated growth inhibition, autocrine TGF-beta signaling can promote tumorigenesis. Elevated levels of TGF-beta1 are often observed in advanced carcinomas, and have been correlated with increased tumor invasiveness and disease progression.

This Mouse TGF beta 1 overexpression lysate was created in HEK293 Cells and intented for use as a Western blot (WB) positive control. Purification of TGF beta 1 protein from the overexpression lysate was verified.
References
Ghadami M, et al. (2000) Genetic Mapping of the Camurati-Engelmann Disease Locus to Chromosome 19q13.1-q13.3. Am J Hum. Genet. 66(1):143-7.
Letterio J, et al. (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol. 16:137-61.
Vaughn SP, et al. (2000) Confirmation of the mapping of the Camurati-Englemann locus to 19q13. 2 and refinement to a 3.2-cM region. Genomics. 66(1):119-21.
Assoian R, et al. (1983) Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 258(11):7155-60.

NCBI and Uniprot Product Information

NCBI GI #
NCBI GeneID
UniProt Accession #
Molecular Weight
44,310 Da
NCBI Official Full Name
Transforming growth factor beta-1
NCBI Official Synonym Full Names
transforming growth factor, beta 1
NCBI Official Symbol
Tgfb1
NCBI Official Synonym Symbols
Tgfb; Tgfb-1; TGFbeta1; TGF-beta1
NCBI Protein Information
transforming growth factor beta-1; TGF-beta 1; TGF-beta-1; regulatory protein; transforming growth factor-beta 1
UniProt Protein Name
Transforming growth factor beta-1
UniProt Gene Name
Tgfb1
UniProt Synonym Gene Names
TGF-beta-1; LAP
UniProt Entry Name
TGFB1_MOUSE

Uniprot Description

TGFB1: Multifunctional protein that controls proliferation, differentiation and other functions in many cell types. Many cells synthesize TGFB1 and have specific receptors for it. It positively and negatively regulates many other growth factors. It plays an important role in bone remodeling as it is a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts. Homodimer; disulfide-linked, or heterodimer with TGFB2. Secreted and stored as a biologically inactive form in the extracellular matrix in a 290 kDa complex (large latent TGF-beta1 complex) containing the TGFB1 homodimer, the latency-associated peptide (LAP), and the latent TGFB1 binding protein-1 (LTBP1). The complex without LTBP1 is known as the'small latent TGF-beta1 complex'. Dissociation of the TGFB1 from LAP is required for growth factor activation and biological activity. Release of the large latent TGF-beta1 complex from the extracellular matrix is carried out by the matrix metalloproteinase MMP3. May interact with THSD4; this interaction may lead to sequestration by FBN1 microfibril assembly and attenuation of TGFB signaling. Interacts with the serine proteases, HTRA1 and HTRA3: the interaction with either inhibits TGFB1-mediated signaling. The HTRA protease activity is required for this inhibition. Interacts with CD109, DPT and ASPN. Activated in vitro at pH below 3.5 and over 12.5. Highly expressed in bone. Abundantly expressed in articular cartilage and chondrocytes and is increased in osteoarthritis (OA). Co-localizes with ASPN in chondrocytes within OA lesions of articular cartilage. Belongs to the TGF-beta family.

Protein type: Secreted, signal peptide; Motility/polarity/chemotaxis; Secreted

Cellular Component: proteinaceous extracellular matrix; extracellular space; cell surface; microvillus; cell soma; axon; cell; cytoplasm; extracellular region; nucleus; secretory granule

Molecular Function: protein binding; protein homodimerization activity; enzyme binding; growth factor activity; protein heterodimerization activity; punt binding; cytokine activity; protein N-terminus binding; glycoprotein binding; transforming growth factor beta receptor binding; antigen binding

Biological Process: positive regulation of apoptosis; positive regulation of transcription, DNA-dependent; SMAD protein nuclear translocation; positive regulation of protein amino acid dephosphorylation; activation of NF-kappaB transcription factor; regulation of protein import into nucleus; positive regulation of MAP kinase activity; regulation of transforming growth factor beta receptor signaling pathway; negative regulation of ossification; cell cycle arrest; positive regulation of isotype switching to IgA isotypes; regulatory T cell differentiation; T cell differentiation; positive regulation of interleukin-17 production; regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation; positive regulation of chemotaxis; positive regulation of smooth muscle cell differentiation; positive regulation of blood vessel endothelial cell migration; negative regulation of immune response; regulation of sodium ion transport; negative regulation of fat cell differentiation; negative regulation of blood vessel endothelial cell migration; lymph node development; positive regulation of protein secretion; regulation of MAPKKK cascade; positive regulation of cell division; positive regulation of transcription from RNA polymerase II promoter; response to progesterone stimulus; endoderm development; myelination; positive regulation of odontogenesis; negative regulation of phagocytosis; evasion of host defenses by virus; T cell activation; wound healing; positive regulation of cellular protein metabolic process; myeloid dendritic cell differentiation; negative regulation of transcription from RNA polymerase II promoter; phosphate metabolic process; response to organic substance; negative regulation of cell proliferation; CD4-positive, CD25-positive, alpha-beta regulatory T cell lineage commitment; negative regulation of T cell proliferation; mammary gland development; regulation of DNA binding; negative regulation of release of sequestered calcium ion into cytosol; positive regulation of cell proliferation; protein kinase B signaling cascade; protein export from nucleus; inflammatory response; positive regulation of exit from mitosis; epidermal growth factor receptor signaling pathway; mitotic cell cycle checkpoint; common-partner SMAD protein phosphorylation; positive regulation of phosphoinositide 3-kinase activity; positive regulation of peptidyl-serine phosphorylation; SMAD protein complex assembly; regulation of cell proliferation; cell proliferation; positive regulation of protein kinase B signaling cascade; positive regulation of protein complex assembly; negative regulation of interleukin-17 production; positive regulation of protein import into nucleus; epithelial to mesenchymal transition; negative regulation of cell growth; negative regulation of cell-cell adhesion; negative regulation of skeletal muscle development; mononuclear cell proliferation; protein amino acid phosphorylation; hyaluronan catabolic process; regulation of apoptosis; negative regulation of neuroblast proliferation; receptor catabolic process; transforming growth factor beta receptor signaling pathway; positive regulation of superoxide release; germ cell migration; chondrocyte differentiation; negative regulation of mitotic cell cycle; T cell homeostasis; defense response to fungus, incompatible interaction; cell growth; tolerance induction to self antigen; regulation of striated muscle development; skeletal muscle development; organ regeneration; cell activation; organ morphogenesis; negative regulation of DNA replication; hemopoietic progenitor cell differentiation; negative regulation of transcription, DNA-dependent; positive regulation of epithelial cell proliferation; positive regulation of collagen biosynthetic process; defense response; response to estradiol stimulus; negative regulation of cell cycle; regulation of interleukin-23 production; positive regulation of histone deacetylation; negative regulation of protein amino acid phosphorylation; lipopolysaccharide-mediated signaling pathway; adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains; skeletal development; negative regulation of epithelial cell proliferation; intercellular junction assembly and maintenance; regulation of binding; MAPKKK cascade; morphogenesis of a branching structure; cellular calcium ion homeostasis; protein import into nucleus, translocation; ATP biosynthetic process; positive regulation of histone acetylation; positive regulation of protein amino acid phosphorylation; negative regulation of myoblast differentiation; negative regulation of T cell activation; growth; positive regulation of cell migration

Research Articles on TGFB1

Similar Products

Product Notes

The TGFB1 tgfb1 (Catalog #AAA8116793) is a Cell Lysate produced from HEK293 Cells and is intended for research purposes only. The product is available for immediate purchase. The immunogen sequence is 372aa. AAA Biotech's TGF beta 1 can be used in a range of immunoassay formats including, but not limited to, Western Blot (WB). WB: Use at an assay dependent dilution. Researchers should empirically determine the suitability of the TGFB1 tgfb1 for an application not listed in the data sheet. Researchers commonly develop new applications and it is an integral, important part of the investigative research process. The amino acid sequence is listed below: Met1-Ser39 0. It is sometimes possible for the material contained within the vial of "TGF beta 1, Cell Lysate" to become dispersed throughout the inside of the vial, particularly around the seal of said vial, during shipment and storage. We always suggest centrifuging these vials to consolidate all of the liquid away from the lid and to the bottom of the vial prior to opening. Please be advised that certain products may require dry ice for shipping and that, if this is the case, an additional dry ice fee may also be required.

Precautions

All products in the AAA Biotech catalog are strictly for research-use only, and are absolutely not suitable for use in any sort of medical, therapeutic, prophylactic, in-vivo, or diagnostic capacity. By purchasing a product from AAA Biotech, you are explicitly certifying that said products will be properly tested and used in line with industry standard. AAA Biotech and its authorized distribution partners reserve the right to refuse to fulfill any order if we have any indication that a purchaser may be intending to use a product outside of our accepted criteria.

Disclaimer

Though we do strive to guarantee the information represented in this datasheet, AAA Biotech cannot be held responsible for any oversights or imprecisions. AAA Biotech reserves the right to adjust any aspect of this datasheet at any time and without notice. It is the responsibility of the customer to inform AAA Biotech of any product performance issues observed or experienced within 30 days of receipt of said product. To see additional details on this or any of our other policies, please see our Terms & Conditions page.

Item has been added to Shopping Cart

If you are ready to order, navigate to Shopping Cart and get ready to checkout.

Looking for a specific manual?
Request a Manual

Request more Information

Please complete the form below and a representative will contact you as soon as possible.

Request a Manual

Please complete the form below and a representative will contact you as soon as possible.

Request a Quote

Please complete the form below and a representative will contact you as soon as possible.