References
Isolation and characterization of human glycophorin A cDNA clones by a synthetic oligonucleotide approach
nucleotide sequence and mRNA structure.Siebert P.D., Fukuda M.Proc. Natl. Acad. Sci. U.S.A. 83:1665-1669(1986)
Isolation of cDNA clones for human erythrocyte membrane sialoglycoproteins alpha and delta.Tate C.G., Tanner M.J.A.Biochem. J. 254:743-750(1988)
Structural organization of glycophorin A and B genes
glycophorin B gene evolved by homologous recombination at Alu repeat sequences.Kudo S., Fukuda M.Proc. Natl. Acad. Sci. U.S.A. 86:4619-4623(1989)
The mechanism of production of multiple mRNAs for human glycophorin A.Jawad K., Burness T.H.Nucleic Acids Res. 18:5829-5836(1990)
Characterization of glycophorin A transcripts
control by the common erythroid-specific promoter and alternative usage of different polyadenylation signals.Kudo S., Onda M., Fukuda M.J. Biochem. 116:183-192(1994)
Extensive alternative splicing of glycophorins in Southeast Asian populations.Hsu K., Huang S.-Y., Chi N., Lin M. Complete sequencing and characterization of 21,243 full-length human cDNAs.Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R., Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H., Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S., Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K., Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A., Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M., Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y., Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M., Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K., Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S., Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J., Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y., Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N., Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S., Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S., Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O., Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H., Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B., Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y., Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T., Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y., Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S., Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T., Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M., Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T., Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K., Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R., Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.Nat. Genet. 36:40-45(2004)
Generation and annotation of the DNA sequences of human chromosomes 2 and 4.Hillier L.W., Graves T.A., Fulton R.S., Fulton L.A., Pepin K.H., Minx P., Wagner-McPherson C., Layman D., Wylie K., Sekhon M., Becker M.C., Fewell G.A., Delehaunty K.D., Miner T.L., Nash W.E., Kremitzki C., Oddy L., Du H., Sun H., Bradshaw-Cordum H., Ali J., Carter J., Cordes M., Harris A., Isak A., van Brunt A., Nguyen C., Du F., Courtney L., Kalicki J., Ozersky P., Abbott S., Armstrong J., Belter E.A., Caruso L., Cedroni M., Cotton M., Davidson T., Desai A., Elliott G., Erb T., Fronick C., Gaige T., Haakenson W., Haglund K., Holmes A., Harkins R., Kim K., Kruchowski S.S., Strong C.M., Grewal N., Goyea E., Hou S., Levy A., Martinka S., Mead K., McLellan M.D., Meyer R., Randall-Maher J., Tomlinson C., Dauphin-Kohlberg S., Kozlowicz-Reilly A., Shah N., Swearengen-Shahid S., Snider J., Strong J.T., Thompson J., Yoakum M., Leonard S., Pearman C., Trani L., Radionenko M., Waligorski J.E., Wang C., Rock S.M., Tin-Wollam A.-M., Maupin R., Latreille P., Wendl M.C., Yang S.-P., Pohl C., Wallis J.W., Spieth J., Bieri T.A., Berkowicz N., Nelson J.O., Osborne J., Ding L., Meyer R., Sabo A., Shotland Y., Sinha P., Wohldmann P.E., Cook L.L., Hickenbotham M.T., Eldred J., Williams D., Jones T.A., She X., Ciccarelli F.D., Izaurralde E., Taylor J., Schmutz J., Myers R.M., Cox D.R., Huang X., McPherson J.D., Mardis E.R., Clifton S.W., Warren W.C., Chinwalla A.T., Eddy S.R., Marra M.A., Ovcharenko I., Furey T.S., Miller W., Eichler E.E., Bork P., Suyama M., Torrents D., Waterston R.H., Wilson R.K.Nature 434:724-731(2005)
Molecular biological study of the structure and expression of human glycophorin A.Siebert P.D., Fukuda M.Rev. Fr. Transfus. Immunohematol. 29:251-266(1986)
Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin.Tomita M., Marchesi V.T.Proc. Natl. Acad. Sci. U.S.A. 72:2964-2968(1975)
Furthmayr H., Galardy R., Tomita M., Marchesi V.T.Submitted (JUN-1977)
to the PIR data bankCharacterization of cDNA clones for human glycophorin A. Use for gene localization and for analysis of normal of glycophorin-A-deficient (Finnish type)
genomic DNA.Rahuel C., London J., D'Auriol L., Mattei M.-G., Tournamille C., Skrzynia C., Lebouc Y., Galibert F., Cartron J.-P.Eur. J. Biochem. 172:147-153(1988)
Mg and Mc
mutations within the amino-terminal region of glycophorin A.Furthmayr H., Metaxas M.N., Metaxas-Buhler M.Proc. Natl. Acad. Sci. U.S.A. 78:631-635(1981)
Amino acid and carbohydrate structural variants of glycoprotein products (M-N glycoproteins)
of the M-N allelic locus.Blumenfeld O.O., Adamany A.M., Puglia K.V.Proc. Natl. Acad. Sci. U.S.A. 78:747-751(1981)
Structural studies on human erythrocyte glycoproteins. Alkali-labile oligosaccharides.Thomas D.B., Winzler R.J.J. Biol. Chem. 244:5943-5946(1969)
Erythrocytes deficiency in glycophorin resist invasion by the malarial parasite Plasmodium falciparum.Pasvol G., Wainscoat J.S., Weatherall D.J.Nature 297:64-66(1982)
Structures of novel sialylated O-linked oligosaccharides isolated from human erythrocyte glycophorins.Fukuda M., Lauffenburger M., Sasaki H., Rogers M.E., Dell A.J. Biol. Chem. 262:11952-11957(1987)
The glycophorin A transmembrane domain dimer
sequence-specific propensity for a right-handed supercoil of helices.Treutlein H.R., Lemmon M.A., Engelman D.M., Brunger A.T.Biochemistry 31:12726-12732(1992)
Glycosylation sites identified by solid-phase Edman degradation
O-linked glycosylation motifs on human glycophorin A.Pisano A., Redmond J.W., Williams K.L., Gooley A.A.Glycobiology 3:429-435(1993)
Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum.Sim B.K., Chitnis C.E., Wasniowska K., Hadley T.J., Miller L.H.Science 264:1941-1944(1994)
Identification of blood group A and B antigens in human glycophorin.Podbielska M., Krotkiewski H.Arch. Immunol. Ther. Exp. 48:211-221(2000)
Red-cell glycophorin A-band 3 interactions associated with the movement of band 3 to the cell surface.Young M.T., Beckmann R., Toye A.M., Tanner M.J.Biochem. J. 350:53-60(2000)
Glycophorin A dimerization and band 3 interaction during erythroid membrane biogenesis
in vivo studies in human glycophorin A transgenic mice.Auffray I., Marfatia S., de Jong K., Lee G., Huang C.H., Paszty C., Tanner M.J., Mohandas N., Chasis J.A.Blood 97:2872-2878(2001)
In vivo detection of hetero-association of glycophorin-A and its mutants within the membrane.Gerber D., Shai Y.J. Biol. Chem. 276:31229-31232(2001)
Distinct regions of human glycophorin A enhance human red cell anion exchanger (band 3; AE1)
transport function and surface trafficking.Young M.T., Tanner M.J.J. Biol. Chem. 278:32954-32961(2003)
The blood group system.Reid M.E., Christine Lomas-Francis C.(In)
Reid M.E., Christine Lomas-Francis C. (eds.)
;The blood group antigen factsbook, pp.29-104, Academic Press, Oxford (2004)
ABH blood group antigens in O-glycans of human glycophorin A.Podbielska M., Fredriksson S.A., Nilsson B., Lisowska E., Krotkiewski H.Arch. Biochem. Biophys. 429:145-153(2004)
Altered structure and anion transport properties of band 3 (AE1, SLC4A1)
in human red cells lacking glycophorin A.Bruce L.J., Pan R.J., Cope D.L., Uchikawa M., Gunn R.B., Cherry R.J., Tanner M.J.J. Biol. Chem. 279:2414-2420(2004)
Capsid region involved in hepatitis A virus binding to glycophorin A of the erythrocyte membrane.Sanchez G., Aragones L., Costafreda M.I., Ribes E., Bosch A., Pinto R.M.J. Virol. 78:9807-9813(2004)
Hsa, an adhesin of Streptococcus gordonii DL1, binds to alpha2-3-linked sialic acid on glycophorin A of the erythrocyte membrane.Yajima A., Urano-Tashiro Y., Shimazu K., Takashima E., Takahashi Y., Konishi K.Microbiol. Immunol. 52:69-77(2008)
Interaction of anion exchanger 1 and glycophorin A in human erythroleukaemic K562 cells.Pang A.J., Reithmeier R.A.Biochem. J. 421:345-356(2009)
An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome.Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D., Wang L., Ye M., Zou H.J. Proteomics 96:253-262(2014)
One- and two-dimensional NMR studies of the N-terminal portion of glycophorin A at 11.7 Tesla.Dill K., Hu S.H., Berman E., Pavia A.A., Lacombe J.M.J. Protein Chem. 9:129-136(1990)
A transmembrane helix dimer
structure and implications.Mackenzie K.R., Prestegard J.H., Engelman D.M.Science 276:131-133(1997)
Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching.Adams P.D., Engelman D.M., Bruenger A.T.3.3.CO;2-O>Proteins 26:257-261(1996)
Molecular basis for the human erythrocyte glycophorin specifying the Miltenberger class I (MiI)
phenotype.Huang C.-H., Spruell P., Moulds J.J., Blumenfeld O.O.Blood 80:257-263(1992)
Molecular analysis of human glycophorin MiIX gene shows a silent segment transfer and untemplated mutation resulting from gene conversion via sequence repeats.Huang C.H., Skov F., Daniels G., Tippett P., Blumenfeld O.O.Blood 80:2379-2387(1992)
Alteration of splice site selection by an exon mutation in the human glycophorin A gene.Huang C.H., Reid M., Daniels G., Blumenfeld O.O.J. Biol. Chem. 268:25902-25908(1993)
Glycophorin A mutation Ala65 --> Pro gives rise to a novel pair of MNS alleles ENEP (MNS39)
and HAG (MNS41)
and altered Wrb expression
direct evidence for GPA/band 3 interaction necessary for normal Wrb expression.Poole J., Banks J., Bruce L.J., Ring S.M., Levene C., Stern H., Overbeeke M.A., Tanner M.J.Transfus. Med. 9:167-174(1999)
The low-frequency MNS blood group antigens Ny(a)
(MNS18)
and Os(a)
(MNS38)
are associated with GPA amino acid substitutions.Daniels G.L., Bruce L.J., Mawby W.J., Green C.A., Petty A., Okubo Y., Kornstad L., Tanner M.J.Transfusion 40:555-559(2000)
The MNS blood group antigens, Vr (MNS12)
and Mt(a)
(MNS14)
, each arise from an amino acid substitution on glycophorin A.Storry J.R., Coghlan G., Poole J., Figueroa D., Reid M.E.Vox Sang. 78:52-56(2000)
+Additional computationally mapped references.<p>Provides general information on the entry.