Rabbit ATP5H Polyclonal Antibody | anti-ATP5H antibody
ATP5H Antibody
NCBI and Uniprot Product Information
NCBI Description
Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the d subunit of the Fo complex. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. In addition, three pseudogenes are located on chromosomes 9, 12 and 15. [provided by RefSeq, Jun 2010]
Uniprot Description
ATP5H: Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements. Belongs to the ATPase d subunit family. 2 isoforms of the human protein are produced by alternative splicing.
Protein type: Mitochondrial; EC 3.6.3.14; Energy Metabolism - oxidative phosphorylation
Chromosomal Location of Human Ortholog: 17q25
Cellular Component: nucleoplasm; mitochondrion; mitochondrial inner membrane; cytoplasm; mitochondrial proton-transporting ATP synthase complex
Molecular Function: ATPase activity; transmembrane transporter activity; hydrogen ion transmembrane transporter activity
Biological Process: cellular metabolic process; mitochondrial ATP synthesis coupled proton transport